
ECE 4710 Final Project 

VHDL Game: 2048 
 

Authors: Kyle Alspach, Robert Brosig, Grant Parker 
Electrical and Computer Engineering Department 

School of Engineering and Computer Science 
Oakland University, Rochester, MI 

E-mails: kalspach@oakland.edu, rmbrosig@oakland.edu, gparker@oakland.edu 

 
Abstract- The purpose of this project is to implement the 

student’s current understanding of VHDL and apply it to 

designing the popular mobile game “2048”. To beat the 

game, equal tiles are added together to reach the sum of 

2048. The game is controlled by four controls, up, left, 

down and right. This is aliased as “wasd” for simplicity of 

input. Through the use of hardware, several components 

such as FSM’s, counters, comparators, and VGA display 

controls, the desired implementation will be achieved.  
 

I. INTRODUCTION 

In today’s world, video games come in different shapes 

and sizes. Though most games are coded with programming 

languages, the same outcome can be achieved through 

hardware description languages such as VHDL. The topic of 

this project is the mobile game “2048”. This game is played 

by sliding tiles that are randomly generated and adding them 

up until you get to the number 2048. 

The game starts off with a 4 x 4 matrix and two 

randomly placed and generated number blocks normally 2’s. 

The game is then operated through user inputs by swiping a 

finger up, down, left and right across the mobile device’s 

screen. Once equal valued numbers are swiped into each 

other, they create a new block which is the sum of the 

previous two. 

As mentioned, the end goal is to slide enough of these 

blocks together until the end value of 2048 is achieved. 

While the end goal is simple, the user must manage the 

matrix space and prevent too many number blocks crowding 

it. If the matrix becomes full and prohibits newly generated 

blocks from appearing, the game is over. 

 

II. METHODOLOGY 

The first step is to start developing a circuit diagram 

that would best achieve the desired implementation of the 

game. The biggest obstacle that was faced was the main 

control circuit, more specifically the FSM. With each 

movement input and each number tile moving in tandem, 

there are a lot of conditions that need to be checked in 

order to move from one state to the next. Each state needs 

to check to see if the number 2048 exists, what empty spots 

are there to place new blocks and to check to see if the 

board is too full to add any more blocks. There are many 

more scenarios that need to be checked with every input. 

The input itself shall be handled by the circuit shown on 

the following page. The UART shall load a register with 

each character input, and then compare it to each ASCII 

character value. This is then encoded, ignoring the 0000 

case, as that would imply a character input that is not w, a, 

s, or d. This may cause trouble with this, and if so the 

design will be modified to include the 0000 case. The 

output is a combination of a signal from the UART, and 

the encoded directions, letting the next circuit perform 

functions when a key is pressed, and knowing which key. 

 
Figure 1 - UART Control Circuit 

The next big challenge was to create the VGA display 

for the project. The first step was taking the VGA display 

control circuit from Dr. Llamocca’s FPGA tutorials and 

modifying it [1]. This proved to be a challenge given the 

scope of this project. In order to develop what was needed, 

the game board was thought of as a graph. Rather than 

using a RAM generator to store images, it was more 

efficient to use the graph method to draw each image. 



 

 
Figure 2 - Playing board 

In Figure 2, this is what the rough playing board will 

look like. Each box will be passed a value from the FSM and 

will display the corresponding number. Each number is 

drawn separately as opposed to storing it as a series of 

addresses to save time in simulation and synthesis. 

 
Figure 3 - Rough draft of FSM 

After further development, the final FSM included 7 

separate states: start, direction, move, merge, check highest 

value, win, lose, and random. The first state in the FSM was 

the start state. This state set all the array values to zero and 

then waited for a start signal to be sent. Once this signal was 

sent two random numbers were placed into two array 

components to be displayed on the VGA display. In order to 

simplify the randomly placed values the values could only be 

placed in the outer columns of the array. After random 

numbers are placed it goes to the direction state. 

     The direction state waits for input signal telling it which 

direction was selected, then it sets a btn_direction signal 

equal to that value to be used in later states. Once a proper 

direction signal is sent the FSM moves onto the move state. 

While in the move state the FSM looks at the btn_direction 

signal and depending on which direction is selected it shifts 

all values in that direction. During this phase it looks at every 

possible combination that allows the numbers to move into 

blank spaces. Once the numbers have been moved into the 

blank spaces it moves onto the merge state. 

     In the merge state depending on the btn_direction the 

FSM looks for values that are equal and adds them together. 

Once added together it places the new number in the array 

value that was already being used and brings in a zero from 

the opposite side of the movement. After all possible cases 

have been checked for all the rows or columns depending on 

the btn_direction the FSM moves onto the check highest 

value state.  

     The check highest value does exactly what it sounds like. 

Once in this state it first checks all the values to see if one of 

the array values is equal to 2048 if it is, it generates a winner 

signal and goes to the win state. If not it checks to see if any 

of the array values are equal to one another in a way that can 

be moved and merged together. If there is a pair that is equal 

the game goes to the random state, if not and none of the 

array values equal each other then the game is lost and the 

loser signal is generated. Once the loser signal is generated 

the FSM goes to the lose state.  

     In the random state a new number either 2 or 4 is 

randomly placed on the board. After being placed the FSM 

goes back to the direction state where the cycle begins again. 

During the win state the display lets you know you won then 

it goes back to the start state and waits for a start signal. 

Similarly, the lose state does the same thing it just displays 

that the player has lost. Therefore the final FSM design can 

be seen below. 



  
Figure 4 - Final draft of FSM 

 

III. EXPERIMENTAL SETUP 

In order to test the circuit design, the students must first 

download PuTTY onto a computer.  While the FPGA does 

not need to be programmed by the computer if it was already 

programmed by a separate one, PuTTY is used to 

communicate serially to the board, acting as the control 

system.  Any feedback will be sent to the VGA screen, rather 

than serially back to the computer. 

After creating the FSM, it needed to go through testing 

before the VGA display was implemented into it. For this a 

simulation was done using the FSM, many bugs were found 

in the beginning stages of the testing. The first bug that 

occurred was when going into the direction state all the array 

values would go to zero. After looking through the output 

portion of the FSM it was realized that there were no outputs 

during the direction state. In order to fix this all of the array 

values had to be set equal to one another in order to pass the 

values from the previous state into the direction state.  

The next problem that occurred was in the first FSM the 

merge state was before the move state. This was found not to 

work because it would look to merge numbers together 

before it got rid of the blank spaces between them. Therefore 

it would not merge values until the next direction was chosen 

causing the initial merge that was wanted not to happen or 

happened a move later since you would have to choose the 

same direction again in order for it to merge. This was fixed 

by moving the move state to occur before the merge state. 

This allowed for the numbers to move together then merge 

together in the same cycle.  

The biggest problem faced in the FSM was the 

implementation of the random number generator. The 

random number generator was used to first randomly select a 

row and a number for the numbers placed into the array at the 

start of the game. It was also used during the random state for 

introducing new numbers into the board and the end of every 

move. The original thought was for the new number to be 

able to be randomly placed in any open array value but this 

proved very difficult. Instead depending on which 

btn_direction was selected the random number would be 

placed in an open array value on the opposite side of the 

direction. Therefore, if the btn_direction was up the random 

number would be placed in one of the open spots on the 

bottom row of the array. After simplifying the possible cases 

for the new randomly placed numbers it was tested. In testing 

it was found that there was a bug when placing the random 

number. If the random place number was different before and 

after the clock cycle that changed the state to random it 

would place two random numbers in the row or column. If 

the rand place number was the same though it would only 

place one number. This bug was never fixed through 

countless modifications to the random state. A concept that 

was thought of but never had the chance to be implemented 

to fix this was to maybe how the states change on the falling 

edge of the clock cycle. If this were to happen the random 

place number should have been the same before and after 

because it was a separate component that generated a new 

number at every rising clock tick. Once accepting the fact 

that two random numbers may be generated the simulation of 

the FSM looked to be properly functioning. The numbers 

moved and merged together correctly and when all of the 

array values filled up with numbers that did not match each 

other it stated the game was lost.  

Figure 5 - VGA output circuit 



After the FSM was developed and tested, it was 

combined with the VGA display circuit as seen in Figure 4. 

This circuit was built using Dr. Llamocca’s VGA display 

circuit [1]. The circuit works by taking the output horizontal 

and vertical counts to determine when to draw what on the 

screen. The first step was to create the 4x4 grid to display the 

boxes the numbers will be stored in. Since the output display 

of the base VGA display circuit was 640 x 480, each box was 

drawn using 16 coordinates. The coordinates were then 

compared with horizontal and vertical counts and a draw 

signal was outputted. Each box was then combined into one 

signal and compared with a case statement to determine when 

it needed to be drawn and with what array value it was. 

The next step after this was to draw the numbers for the 

array value in each box. This proved to be the toughest 

challenge of the entire VGA display. To aid in the creation of 

this, Microsoft Excel was used to map out each number. 

Since each box was 150 x 110 pixels, the grid used in excel 

was scaled down. Once the layout was figured out for each 

number, it was then written out with a case statement. The 

process read the value from each box and the horizontal and 

vertical counts. Using a series of if statements, each 

horizontal and vertical counts were checked to figure out 

when to output a signal to draw each number. 

 
Figure 6 - Excel Bitmap representation 

Once every circuit was created, the last step was to use 

a series of multiplexors to hold each 12-bit color needed to 

color whatever element needed to be colored. Each number 

had its own background color and was written out along with 

the corresponding number into a register. The register was 

controlled by the video tick outputted from the original VGA 

display circuit. This was sent to the final multiplexor that sent 

out the final RGB signal to the VGA output. Connected to 

the last multiplexor was one more that held the grid colors. 

By default, the grid was black. Once the player achieves 

2048, the grid turns green. If the player fills up the grid and 

can no longer make any more movements, the grid turns red 

to signify that the game was lost. 

 

IV. RESULTS 

While the FSM and receiver worked together, the VGA 

display circuit did not display the correct table.  During 

testing, each component had various issues that had to be 

remedied, including the receiver only accepting the first input 

after a reset, the FSM performing the move and random 

number generation actions multiple times, and the VGA 

display having various difficulties in conversion.  Given the 

lack of time, a focus was placed upon the FSM, as it is 

important that the circuit work at all.  

 
Figure 7 - Top level circuit 

 

 

CONCLUSIONS 

The students gained more knowledge of how to 

properly communicate with external hardware using the 

NEXYS A-7 board, create a complex logic-driven FSM, and 

how to create a display using a VGA display.  While the 

result of the circuit was not as intended, the process of 

making each component was still valuable, teaching the 

students both how to make each part, and the importance of 

keeping enough time budgeted for debugging.  While each 

component by themselves mostly worked, corners had to be 

cut towards the deadline, especially when making sure each 

component worked together.  This is a suboptimal solution, 

and one that the students have learned from. 

 

REFERENCES 

[1]    Llamocca, Daniel. VHDL Coding for FPGAs,   

         

http://www.secs.oakland.edu/~llamocca/VHDLforFPGA

s.html 

       

 


