
T-REX Run! Implemented in VHDL
Matthew James Bellafaire, Khaled Jarrah, Conner McInnes

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
mbellafaire@oakland.edu, kjarrah@oakland.edu, cmcinnes@oakland.edu

Abstract—Through the use of VHDL the aim of this project is
to create a version of the Google Chrome “T-Rex Run” game on
an FPGA. Using a single button to control all inputs, we seek to
employ many parts to ensure proper function of the game’s logic
and visual display. The game has two primary modes, a game
active mode and a game inactive mode, input is received from an
external button. Depending on the state of the game, blocks are
enable or disabled in accordance to ensure proper functioning.

I. INTRODUCTION

”T-Rex Run!” is a simple platformer game available on
google chrome when there is no internet connection available.
The game is played by the player controlling a dinosaur on
the screen and jumping over obstacles which move from left
to right. In order to gain a higher score the player must press
a button to make the character jump on the screen and avoid
the obstacles. If a player fails to jump over an obstacle the
game is reset and the hi-score is recorded and displayed on
the screen next to the current score.

The goal of this project is to create this simple game
using VHDL implemented on an FPGA. The user can control
the game by pressing a large external button connected to
the PMOD headers of the Nexys-A7 board. The game itself
is displayed on an external VGA monitor which is driven
directly from the FPGA development board. Images of the
game objects are stored directly on the FPGA through the
use of LUTs generated by an Octave script. A central Finite
State Machine (FSM) determines the state of the game and
interfaces with game-critical components. This project seeks
to emulate the ”T-Rex Run!” game as closely as possible in
functionality.

II. METHODOLOGY

A. Top Level

To better facilitate testing and development it was decided
to split the project among as many different components as
possible. For this reason, the design of the top file of this
game relies heavily on blocks which are able to interface with
as few inputs as possible. A high level block diagram of the
project can be seen in Figure 1.

The only input to this system is the single button which the
user uses to tell the on-screen character to jump. Deboucing
of the button is handled by the movement algorithm of the
dinosaur block itself, allowing for the exclusion of an external
debouncing component. On screen game objects, such as
the player’s character and the obstacles to be avoided are

controlled by their own independent blocks which track their
location. The movement of these game objects is primarily
controlled by these blocks, however they take inputs from the
game control FSM reset or freeze their position.

Fig. 1. Top File block diagram of ”T-Rex Run!” FPGA implementation

Collision detection is handled autonomously by a collision
detection block which is able to determine whether or not
the hit-boxes of any of the game objects are touching. This
collision detection block outputs a ”detected collision” signal
whenever the hitboxes of two game objects overlap. The
”detected collision” signal is read by the FSM and used to
determine the game state.

Score is maintained in two accumulators which constantly
tick up while the game is in motion. When a high score is
achieved the ”hi-score tracker” block captures the score and
maintains it until a higher score is registered. These score
counters are controlled by the central FSM and only increase
when the game is in an active state.

Finally to simplify the overall design of the project the
”Graphics Generator” block directly handles the drawing of
game objects on the screen. The ”Graphics Generator” handles
all parts of drawing the game objects to the screen and requires
only the x and y coordinates of each game object then draws
them to the screen. In addition, the graphics generator is able to
display scores provided in binary values as base 10 score’s on
the VGA display. The goal of this block was to encapsulate the
drawing of objects on screen as much as possible to simplify
the design of the other blocks in the final system.

B. VGA Output

The VGA output block outputs all game objects to the VGA
output. This block is built on top of the vga ctrl simple com-
ponent provided by Daniel Llamocca. The vga ctrl simple
block is used to draw pixels individually to the VGA display



and to obtain the current pixel being drawn on the screen.
This information is used by logic in the VGA output block to
determine the desired color of the pixel on screen at the given
position. For inputs the VGA output block uses the clock and
reset signals as inputs, and a single signal which determines
whether or not objects on screen are animated.

Individual onscreen components such as the obstacles,
clouds, and player-controlled character are created as separate
components. Each of the onscreen object components take as
inputs the current horizontal and vertical pixel of the VGA
output and the ”animate” signal. For components that move
according to inputs given to the VGA output block the x and
y position is also taken in by the display component. The on-
screen object components output a simple output-mask and a
RGB signal, when the display component is considered ”non-
transparent” the mask will give a value of 0x000 and the RGB
output will give the current RGB value of this pixel. For each
game object shown on the screen a image was created using
paint and then translated into a LUT by a Octave script. The
matlab script created by Daniel Llamocca to create text-files
from images was modified first to run in Octave1, then to
output the text as VHDL code that could be copied into the
component directly. In order to reduce the size of the LUTs
the Ocatave script does not output pixels with an RGB value
of 0x000, this value indicates transparency of the pixel, thus
the default value of the output is set as 0x000. The generated
LUTs serialize the RGB values of the image, in order to obtain
the RGB value of a pixel at a given (x,y) position in an image
we use Equation 1 where w is the image’s width in pixels.

P (x, y) = w ∗ y + x (1)

The vga ctrl simple component provides horizontal and
vertical (h,v) position of the current pixel being written to
the VGA monitors. In essence each component uses these
(h,v) coordinates to determine whether or not they are drawing
to that pixel then outputs either a 12-bit RGB value for
the pixel or 0x000 to indicate transparency. In the case of
translation, objects can be translated on screen using the
coordinate system shown in Figure 2. For a component with
an image translated by coordinates (x,y) the current RGB
output is found by Equation 2 using the horizontal and vertical
position of the current pixel (h,v). If the required pixel is
outside of the image’s size then the component will simply
output an RGB value of 0x000 and a mask value of 0xFFF to
indicate transparency.

RGB(v, h) = P (h− x, v − y) (2)

To write multiple independent images to the screen an insert
approach was used to give certain components priority over
others. Each game object component has an RGB and Mask
output, the Mask output is 0x000 when a pixel is being used
and 0xFFF when it is not. When a pixel at an indicated (h,v)
position is to be written to by a game object the previous

1Ocatave does not have support currently for fixed point arithmetic,
therefore the conversion of images to LUTs needed to be changed.

Fig. 2. Coordinate system of the VGA output block, coordinates are
referenced to the upper left corner of the screen.

Fig. 3. Connections to individual game objects inside the VGA output block.

component’s RGB value is masked off and the new RGB value
is inserted onto the output. The result is that all components
are essentially placed in a ”chain” as shown in Figure 3, with
items in the foreground being found closer to the final RGB
output of the chain.

In order to show numbers on the VGA display the ”num-
berDigit” component was created which utilizes the methods
previously outlined. The numberDigit uses VHDL parameters
in order to set its fixed position and takes in a 4-bit BCD
digit which is then displayed on the screen. The numberDigit
extracts the numbers to be displayed on screen from the image
shown in Figure 4. In order to display the numbers on screen
the numberDigit component crops out the required digit from
the image and draws that to the screen with black pixels being
treated as transparent.

The scoreboard which displays in the upper right hand
corner of the screen uses a unique approach in the VGA output
block in order to display numbers on the screen. For simplicity
the scoreboard was written as a parametric component which
can be synthesized to display up to a specified ”max score”,
this parameter is used to determine the number of base 10
digits required to display a given max score. The scoreboard
generates the required number of numberDigit components to
display the given maxScore. A VHDL process was created to
convert unsigned binary values given as an input to the VGA
output block into BCD digits which could be individually
displayed. Using the numeric.std library the binary input of the
scoreboard is converted to BCD for the nth digit D with binary

Fig. 4. Numbers image used to draw digits in numberDigit component



Fig. 5. Frames cycled between by the T-rex visual component when the
animate signal is equal to ’1’

Fig. 6. The dinosaur image displayed by the game when the animate signal
is equal to ’0’

input z using Equation 3. The output of this VHDL process is
then used as an input by the number digits which display the
Base 10 score on the VGA screen. This approach allows for
the score to be easily provided by external components which
are directly controlled by the FSM.

Dn =
z mod 10n+1

n
(3)

In some cases objects will have their own internal anima-
tions, display components such as the dinosaur and the clouds
have an animation cycle controlled by the ”animate” signal
input to the VGA display block. In the case of the clouds
the visual component moves from the right to the left of
the screen whenever the animate input is ’1’ and stop when
that input is ’0’. The dinosaur also uses this methodology
to create a walking or standing animation depending on the
animate input. When the animate input is ’1’ the dinosaur
will display a walking animation by switching between the
two frames shown in Figure 5 at a slow rate. When animate
input is ’0’ the dinosaur displays only a single frame with
both feet on the ground as shown in Figure 6. The advantage
to these self-contained visual components is that they require
minimal external interfacing and allow for the player to have
an intuitive indication of the current game state.

C. Collision

The collision detection process based on overlap detection
between the T-Rex and the cactus. Viewing Figure 7 whenever

Fig. 7. Collision detector

Line 1 becomes below Line 2 , the possibility of the overlap-
ping will be high. In order to check if there is a collision, Line
3 or line 4 should be located between the cactus X-Left and
X-right coordinates. If that so , the collision signal will be set
and the game will be ended.

D. Movement

We analyze two-dimensional Dinosaur jump motion by
breaking it into two independent one-dimensional motions
along the vertical and horizontal axes. The horizontal motion
is simple, because ax=0 and vx is thus constant. However,
The velocity in the vertical direction begins to decrease as
the Dinosaur rises; at its highest point, the vertical velocity is
zero. As the object falls towards the Earth again by the Gravity
force, the vertical velocity increases again in magnitude but
points in the opposite direction to the initial vertical velocity.
The Y position can be extracted to give the exact position
and height at any given point on the trajectory. However, if
the Dinosaur is not in the jump state, he will move with a
constant velocity vx. The derived kinematic equations to draw
the dinosaur motion are shown by Equations 4 and 5, where
YAcceleration is a constant value.

Yvelocity = Yvelocity + YAcceleration (4)

YPosition = YPosition + Yvelocity (5)

The cactus will move with a negative constant speed relative
to the Dinosaur movement direction. The cactus is moved
exclusively to the left without any vertical velocity.

E. Game Logic

The game logic block controls the status of the game using
two processes that will ensure proper functioning of the FSM.
It uses a process named transitions to handle the various states



Fig. 8. Fig. 2. Diagram of the multiple states and conditions used for the
Game Logic’s FSM

of which there are four. The process requires a clock event
to run the if statements that make it up. Importantly this
process solely handles the change of states, not the outputs. A
separate process entitled output is what utilized these states to
determine the outputs of the component. Most of the game
logic is handled through an FSM that has many outputs
that ensures all components will receive the correct inputs
depending on the game’s status. A diagram for the FSM is
illustrated in in Figure 8. The FSM has to major outputs in
gameState and gameActive. gameState is one bit signal that is
set high when the game is in a state where the dinosaur can
jump and cacti are moving. gameActive is a two bit signal
has the following significance: ”00” is the startup, ”01” is

the title, ”10” is the game play, and ”11” is the game over.
Next an overview of the state transitions and outputs will be
ran through. State one is the startup phase, not much happens
here and will immediately change to state two after one clock
cycle. All the outputs are set to zero in state one and it is
invoked when resetn = ’0’. State two is the title for the game,
the screen will load up but no animation will be occurring. The
gameState is set to ”01” and the state will transition to state
three if button is high during the next clock cycle. If it is low
it will stay in state two waiting for the user to click the button
to ready the game. State three is where the game play occurs.
gameActive is high and gameState is set to ”10”. When button
is high jump will go high, but this will have no effect on the
states. If the Game Logic receives the signal collision as high,
that means a collision has occurred and the game should go
to its end state and progress to state four. When collision is
low the FSM stays in state three. State four is the final state
that exists in the FSM and it is just the end state. gameState
is set to ”11” and until button goes high, the FSM will stay
indefinitely in state four. When the button finally recieves a
high signal the FSM will loop back to state three and repeat
the process until the FPGA is turned off or reset.

The other part of the game logic is a counter that will send
signals to generate cacti or increment the score on two sec-
ond timers. The signals obstacleEnable1 and obstacleEnable2
indicate when one of the cacti should be set to the edge of
the screen to traverse it horizontally. Whereas a signal named
score is sent every two seconds that will indicate for the score
tracker to raise the score. This creates a scoring system that
increases as the player stays alive longer. A process called
timer will dictate how much time will pass between when
these signals are set to one or zero. An unsigned internal
signal named time is incremented on every clock event by one.
When time reaches the value of 50,000,000 obstacleEnable1
is set to ’1’ for the clock cycle and reverted back down to
zero after. After time reaches 100,000,000 obstacleEnable2 is
set to ’1’, score is set to ’1’, and finally time is set back to
zero. The values of 50,000,000 and 100,000,000 were chosen
because we are utilizing the 50Mhz clock built to the Nexys
A7 board, each clock pulse will increment time by one so
after 50,000,000 clock pulses one second will have passed.
An additional statement exists that will reset the time variable
when the game is no longer active back to zero.

F. Score Tracker

This block receives a command to increment the score by
100 and will do so if and only if the game is active. In addition
it is responsible for storing and replacing the hiscore when a
new hiscore has been achieved. It uses the clock event and
multiple if statements inside of a process to to increment the
score correctly. When the game has ended and gameActive =
’0’, a signal named scoreNum is compared against hiscoreNum
and replaced if it is greater. Following this scoreNum is set
back to zero and awaits for the game to restart before it is
incremented again.



Fig. 9. Experimental setup of the FPGA board using an external 30mm arcade
button with a 10kΩ pull-down between the read pin and the JA[1] connector
on the Nexys A7, and VGA output connected to an external monitor.

III. EXPERIMENTAL SETUP

As the game is really hard to be simulated in the real game
time, we simulated the entities over milliseconds to insure the
functionality of the game. We faced several problems in this
case from denouncing, high pulse duration and animation ratio
problems. However, we could solved several problems on this
level and for that we saved a lot of time and we simulated
over the real times just few times.

The simulation was to test all the functionality, signals and
how the FSM controls the game. we were able to following
the signals one by one and analyzing every signal in the game
to make sure that this signal did its duty perfectly without
affecting any other signal functionality.

During these small simulations, we could imagine the
functionality of the game, and expand it on the real game time
which is in seconds. By this scenario, we were able to build
the game on a very short period. Testing for the final game
consisted primarily of playing the game and searching for any
unexpected behavior. When unexpected behavior was found
the system was re-simulated when possible to correct issues
or collaboration between the group was used to determine the
source of problems.

In the final testing procedure a 30mm arcade button was
connected to the Nexys A7 board and used to drive the input
of the dinosaur. The button was connected with a 10kΩ pull-
down resistor between the button’s lead and the GND pin of
the JA header on the board. An image of the testing setup
can be seen in Figure 9, showing the VGA connected to the
FPGA and external button utilized. For much of the testing of
the program the BTNC button on the FPGA board was utilized
to facilitate collaboration between the group working on this
project.

IV. RESULTS

The results of this project were overall highly positive. even
though if we faced several issues in the design, in connecting
several entities together or even dealing with libraries that has
no synthesis, but we were able to build the T-rex game and
getting high score in it by one button input.

As the game entities is strongly controlled by the FSM
which controls all the signals sent or received by the other
classes in the game, we would able to make the game so
realistic on a low level environment. The Dinosaur will keep
running and the score will be increased until the collision
happened. Once the collision happened, the score will persists
if it is higher than the registered high score and every thing
will be frozen. when the button is pressed a gain, then the
game will restart again to get other high score.

Finally, after all testing, simulations and effort, we could
build a real game on FPGA connecting to the VGA. In the
final implementation the game was tested by being played to
find any unexpected behavior. The final game ran without any
significant issues at the end of development. Animations, such
as the dinosaur’s walking animation and the cloud movement,
were able to operate properly while the game was in an active
state and did not continue when the game was not running. The
score accumulator was able to accumulate score as expected,
counting by 100 for each 2 seconds the player avoided an
obstacle, and loading the high-score to the proper scoreboard
at the end of the game. Finally the collision and obstacle
blocks were able to determine when a collision had occurred
between the player and an obstacle, resulting in a game-over
status.

The game was able to be played without resetting the FPGA
or any special input, the FSM was able to control the game
state without any significant issues. In the active state the
game displayed cloud and character animations and moved the
obstacles from right to left on the screen as shown in Figure
11. Whereas in the inactive state the game was able to pause
all on-screen animations and move initiate the game when the
player pressed the input button as shown in 10.

Fig. 10. T-rex game in start-state before the player presses the input button

V. CONCLUSIONS

Overall the project turned out in a state as good or even
better than we imagined. That’s not to say at numerous points
during the development that there were issues. In fact, a lot of
important concepts about VHDL and implementation of parts
and process was made apparent. One of which was the how
significant it is to include every variable you read from in
process in the sensitivity list. Lots of debugging time could



Fig. 11. T-Rex Run game in active state, note score counter in the upper
right accumulating score by 100 and the saved high-score

have been saved had the sensitivity list been implemented
properly on the first time of synthesizing it. In addition the
use of libraries that utilized floats complicated the project
when it came time to synthesizing. These libraries would not
synthesize and thus the code had to be completely rewritten
and debugged very late into the development. This caused
issues with port mapping the component to other components
and threw back numerous errors until it was finally fully
debugged. Compartmentalizing the code into distinct blocks
that would handle calculations locally allowed for each part
to rely on one another without any one component becoming
to burdened with a lot of code. The use of LUTs to store
the object data also enlightened us to how intensive using
large LUTs can be when trying to synthesize, implement,
and generate a bit-stream. One additional thing is, since the
components were made to work with real-time conditions,
simulating the code become a challenging without rewriting
or redefining numerous variables to work at a more efficient
time scale for simulation.


