
Music Time

FPGA Piano

List of Authors (Kulin Damani, David Lewis, Chris Viray)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: kldamani@oakland.edu, djlewis2@oakland.edu, cviray@oakland.edu

I. INTRODUCTION
This report will cover how we will make a musical

keyboard reproduce sounds with the utilization of a
FPGA, Nexys4 Board. The motivation for this project
is for the Final project for Llammoca’s Computer
Hardware class. The implications of this project is to
learn more about the audio jack and the PS2 input on
the Nexys4 Board.We will also be learning about how
the data transfer works between the keyboard and the
FPGA.

From the class, this project will cover how we can
capture and generate sounds using the FPGA. Topics
learned on our own will cover how we can generate a
sound during a keypress from the keyboard.
Applications of this project will be making music and
having a more portable musical keyboard to carry
around wherever you may travel.

II. METHODOLOGY
For this project we will be interfacing with a PS/2

keyboard to generate a signal that will control an
output frequency for the mono audio jack on the board.
The frequency will be held in a decoder file. We plan
on using the full PWM range (from 0 to 255) to select
and create 4 separate octaves. 2 switches on the board
will be used to create a select signal for a demux. The
demux will output the signal from the keyboard to one
of four decoders. Each decoder will correspond to one
of the four octaves of notes. Then the corresponding
frequency of that note will be converted and sent to the
mono audio jack included on the FPGA. The audio
jack then converts the digital signal into a single
channel analog audio signal which will be received
and played by a speaker.

A. PS2Keyboard

The figure 1 shows the full diagram of the

interfacing with keyboard that has two 1-bit input
which are the ps2c and ps2d and an output of 8-bits
scan codes. When the key is pressed, it will go through
the ps2read to generate it from the keyboard and it will
produce 10-bits, but the bits will cut-off to 8-bits
output to go to the register with enable and the FSM
which the control circuit. However, when the key is
released, an ‘FO’ key-up is sent ahead of the scan
codes so there is always extended key that is sent
before and after you pressed the key.

Figure1: PS2keyboard Diagram

The FSM has two state that will control the output of
the ps2keyboard component in figure 2. The two input
will come from the ps2read to produce an output Er
which enable the register when the key is pressed. the
done_r will only be ‘1’ when the ps2read produced
output of key-up code and scan codes and it will only
go to state two when the dout8 is equal to ‘FO’. When
the key is pressed, the scan codes will trigger and
generate an output of 8-bits scan codes.

Figure2: Keyboard FSM

Each key has a hexadecimal representation or 8-bits in
binary. We will only be using 7 key scan codes which
are A, B, C, D, E, F, and G. Those letters will be based
on the key of the piano tone so each key will have
different tone to it and the other scan codes will be the
pedal tone to minimize the sound.

Figure3: Keyboard Scan Codes

B. Keyboard
From the keyboard scan codes we can determine
which data we need to use to create a signal that comes
out when pressing one of the keys, A-G. Since each
letter has the same key up code, we only needed to
know the HEX representation on the keyboard. This
keyboard will then ultimately control how the tone
changes in the hands of the user.

C. Decoder

The decoder was used to map the keyboard press to the
correct frequency. The frequency was then connected
to the audio files created by Dr. Llamocca to vary the
frequency being outputted. Since we had multiple
octaves, we used a switch to switch between the

octaves, so that we are still utilizing only the seven
keys. Below is Figure4 which shows one part of our
decoder.

 Figure4: Decoder code

D. PWM Audio
The audio files were provided by Dr. Llamocca as
stated previously. The circuits can be seen in Figures
5 and 6. We ran into some issues using it such as
having the Duty Cycle being backwards. This means
that as the frequency got higher the Duty Cycle was
lower, which should not be the case. It should be as the
frequency got higher the Duty Cycle is also higher. We
had a simple fix and mirrored the inputs so that C,
where the keyboard starts, has the higher frequency
and B, where it ends, has the lowest. This is shown
above in Figure 4.

Figure5: PWM Audio Diagram

 Figure6: PWM Audio CTL

Figure 7 is a full overview of our circuit and a clear
look at how everything is connected together.

 Figure 7: Circuit

III. EXPERIMENTAL SETUP
Hardware tools used in this project include a

FPGA Nexys4 Board a PS2 keyboard, and a speaker.
Software that we used in the project is the VHDL
language which will be coded in Vivado. We verified
these tools by how we can use an input to generate a
specific output.

 A keyboard with multiple inputs would be a great
input tool for the project. The speaker will allow us to
hear the frequencies of the sounds we are testing.
Using the FPGA is required for the Computer
Hardware class.

The results of this project were successful at
reproducing sound to replicate that of a piano
keyboard.

IV. RESULTS
The simulation In figure # come from the

ps2keyboard component with the our testbench and it
shows the input and output simulation. The ps2d and
ps2c are only 1-bit input, so we tried to input the value
in a certain seconds until we get the 11-bit input which
include the start, scan codes, parity, and stop bit. We
started the value of the key-up code as ‘FO’ since
ps2read will produce it before of the scan codes so
after ‘FO’ the scan code will be input such as‘1C’ = A.
Therefore, the Dout is producing 0 in the beginning

until it reach the input scan code and then it will
produce the 1C which our scan code. This will
extended longer until the next the scan code will
generate.

We also fixed the issue where the duty cycle was
backwards. It still is, although it is mapped correctly
to its frequency based on its duty cycle. So now it will
more accurately represent a piano keyboard.

Figure8: Keyboard Simulation

Figure9: PWM Audio Simulation

CONCLUSIONS

 The overall results of this project was great.
We accomplished our scope of the project over the
time given to us. Using skills we learned throughout
the semester and using resources provided by Dr.
Llamocca, we were able to create and provide a
creative and fun project. In this project, we got the
chance to learn more about the PS2 interface, as well
as the mono audio jack on the board. We also learned
how we can connect both together to manipulate them
in such a way where we can create something fun.

REFERENCES
1. Llamocca, Daniel. “VHDL Coding for FPGA’s.”

Reconfigureable Computing Research Laboratory. N.p., n.d.
Web. 23 Mar 2019

2. “Diligent” A National Instrument Company. 22 Apr 2019

