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Abstract—the purpose of this project is to communicate and 

interface with sensors that will result in tones being generated 

on the mono audio output and through a buzzer. The 

hardware for this project consists primarily of a USB standard 

keyboard, the temperature sensor, a buzzer, and the mono 

audio output present on the Nexys 4 DDR board. With the use 

of a switch, the user will be able to choose between generating 

tones using the keyboard or using the temperature sensor. 

Another switch is used to choose between the buzzer and the 

mono audio output. While using the keyboard, a unique tone 

will be heard for fifteen different keys, with a sixteenth 

variation of no tone. A qualifying key that generates a tone will 

appear across all four seven-segment displays, with no tone 

and nothing appearing across the seven-segment display for all 

other keys. For the temperature sensor, one of sixteen tones 

will be generated based off the current temperature reading. 

This can be heard through the buzzer or the mono audio 

output. The major finding is that a USB keyboard uses PS/2 

for communication and the temperature sensor uses I2C for 

communication. These communication protocols and 

manufacturer specifications require carefully implemented 

finite state machines. The conclusions clearly indicate that 

different data communication protocols are powerful tools to 

interface with sensors and to drive outputs. Recommendations 

to the user include thorough testing of both the keyboard and 

the temperature sensor. 

I. INTRODUCTION 

This report will outline the methodology, experimental 

setup, results, and conclusions from undertaking this 

project. 

The motivation to generate tones and display figures on 

the seven segment display stems from the desire to 

showcase both a visual and auditory side of hardware. With 

the pressed keyboard key or the temperature being displayed 

on the seven segment display, the audience can clearly see 

the outcome and proper functioning of the hardware 

components. In addition, the audience can hear an output 

from either the mono audio output or the buzzer. For the 

keyboard side, a noise is only heard while a key is pressed. 

For the temperature sensor side, a tone is continuously heard 

that relates to the current temperature that is detected. 

Topics discussed in class that are present in this project 

include the functionalities of several hardware components 

and their implementation in VHDL, such as finite state 

machines, decoders, and multiplexers, among others. Also, 

this project draws from the concept of interfacing with 

external peripherals using the PS/2 and I2C communication 

protocols.  

Although discussed briefly in class, implementation of 

the circuit that interfaces with the keyboard had to be 

thoroughly learned. Also, the interaction with a temperature 

sensor was studied for a more complete understanding. 

Furthermore, the generation of pulse width modulation 

(PWM) and pulse density modulation (PDM) signals had to 

be thoroughly understood. 

The applications of this project include using a keyboard 

to generate tones, which is a form of a personal piano. 

Tones generated from the temperature sensor serve as an 

auditory aid for an estimate temperature. These tones can be 

heard either through the mono audio output or a buzzer 

based on the user’s preference. 

II. METHODOLOGY 

Figure 1 documents a high level architectural structure 

of the system. Figure 2 shows the details of the keyboard 

side of the system. Figure 3 shows the details of the 

temperature sensor side of the system. Interfacing with the 

keyboard and the temperature sensor was understood 

through class notes [1]. The components that interfaced with 

the peripherals were downloaded and modified/implemented 

from the course website [2-4]. The datapath also consisted 

of other basic components [5]. The components are 

explained in further detail below.  

A. my_ps2read 

This block interfaces with a standard keyboard using 

PS/2. The PIC24FJ128 chip inside the Nexys 4 DDR 

emulates a PS/2 protocol for the FPGA. The inputs to this 

block include the PS/2 clock and data, as well as the FPGA 

clock and a resetn signal. On falling edges, the data is 

captured. The format frame of the data is a start bit, which is 

‘0’, 8 bits of data with the LSB transmitted first, an odd 

parity bit, and a stop bit, which is ‘1’. For the data, there is a 

setup and hold time that must be complied with. The signal 

ps2c, for the PS/2 clock, goes through a filter and a falling 

edge detector in an FSM issues a ‘1’ every time it detects a 

falling edge on the clock signal. If there is a falling edge and 

the start bit is ‘1’ on the data line, then this represents the 



start bit. A counter from 0 to 9 is used to shift in the next 10 

bits of data using a right shift register. 

The filter makes sure that ps2c is constant for 8 clock 

cycles before the output signal is changed. This is to reduce 

the chance for glitches that could be misinterpreted as 

falling edges. This circuit uses a right shift register to shift 

in ps2c, an ‘and’ gate, a ‘nor’ gate, a decoder, and register to 

output the filtered version of the clock.  

The output of this block is the data out as 10 bits. This 

consists of the stop bit, the parity bit, and the scan code of 

the pressed key. The data out is configured in this format 

due to the way that the data is shifted in. When all 10 bits 

following the start bit have been shifted in, a done signal is 

set to ‘1’ to indicate that the output data is valid.  

The scan code is transmitted to the block every 100 ms. 

Once the key is no longer pressed, a keyup scan code will be 

outputted, followed by the scan code of the previously 

pressed key.  

B. my_ps2keyboard 

This block consists of my_ps2read, registers, and an 

FSM that checks for when a pressed key has been released. 

Figure 4 details the flow of this FSM. The FSM checks the 

done signal from my_ps2read to see if that lower 8 bits are 

valid. After this, the FSM will check to see if the 8 bits 

represent the key up scan code, which is typically 0xF0. If 

not, this means that a key is being pressed, so an enable 

signal is sent to the register to capture these lower 8 bits as 

the scan code. This enable is also the data input of the done 

register which is always enabled, so a done signal is issued 

indicating that the scan code is valid. If the key up code is 

issued, the signal keyup is set to ‘1’. This signal keyup is 

only ‘1’ when the key up scan code is received. Since the 

protocol follows the key up code by repeating the scan code 

of the pressed key, state two is used to check when this scan 

code has been received such that it can be ignored by the 

output signals. 

C. fsm_keyup 

Figure 5 details the flow of this FSM. This FSM issues a 

high signal once the first scan code is valid by checking the 

done signal of my_ps2keyboard. This signal, called dEn, 

stays high until the keyup scan code is received, at which 

point the signal goes back to ‘0’. Effectively, this signal is 

‘1’ while a key is pressed. The purpose of this finite state 

machine is to serve as an enable for the keyboard_decoder 

and the frq_decoder. 

D. keyboard_decoder 

This decoder uses the scan code from my_ps2keyboard 

to output seven bits that will be given as the input to the 

serializer. The output represents which leds should be 

illuminated on the seven segment display. This decoder is 

only enabled while a key is pressed. This is done by using 

dEn as the enable. Thus, when no key is pressed or an 

invalid key is pressed, the decoder outputs all 0’s. 

E. frq_decoder 

This decoder uses the scan code to output four bits and 

an SD signal that will be given as the input to my_audio. 

This decoder is only enabled while a key is pressed. For 

qualifying keys that are pressed, a unique four bits are 

outputted with an SD of ‘1’. These four bits will eventually 

control the variation rate for a sinusoidal output from the 

mono audio output. 

F. serializer 

The serializer inputs map to each of the eight seven 

segment displays. For the serializer, the same output from 

the keyboard_decoder is mapped to each input, such that the 

same configuration will appear across all eight of the seven 

segment displays. This input is inverted before going to the 

leds of the seven segment display. The serializer component 

consists of its own FSM, multiplexor, and counter. These 

components serve to enable each of the seven segment 

displays for 1ms. At this speed, it appears as if all of the 

eight seven segment displays are illuminated at the same 

time. 

G. my_audio 

To get a PDM signal with changing duty cycle, this 

block is used. This circuit uses my_pwm, counters, and a 

built-in LUT to generate a PDM signal. This PDM output 

will eventually be connected to the mono audio output. This 

block takes four bits as the input frequency, which controls 

the variation rate of the changing duty cycle. These four bits 

translate into a maximum counter value. Sample code is 

shown in Figure 6. Each time that this maximum count is 

reached, the output of an 8 bit counter increases by 1 

between 0 to 255. The frequency for the output signal is set 

to 10kHz. Thus, the four inputs bits control how quickly the 

duty cycle changes. The output of the 8 bit counter is scaled, 

and fed as the duty cycle input to my_pwm. The output of 

this block is therefore a PDM signal. 

H. my_pwm 

There are 15 my_pwm components that are pre-

initialized with a 50% duty cycle and a frequency. Some 

sample code is shown in Figure 7. Each of these 15 blocks 

will produce a different tone on the buzzer, since different 

tones on the buzzer are heard by different frequencies. The 

duty cycle controls the volume. TPWM is the period of the 

PWM signal in units of the FPGA clock cycles. Using 

Equation 1, 15 frequencies ranging between 20Hz to 12kHz 

are generated. 

 

Equation 1: 

𝑻𝒑𝒘𝒎 = 𝑻𝑷𝑾𝑴/𝒇𝒄𝒍𝒐𝒄𝒌 

 

This component consists of an FSM, a register, and an 

embedded counter. Essentially, the output PWM signal is 

toggled every DC clock cycles and TPWM is used to check 

if one period is complete before the sequence starts again. 



The output of each of these blocks is one bit, part of the 

output PWM wave. Each of these are the input for the 16-to-

1 Multiplexor. 

I. 16-to-1 multiplexor 

The inputs to this multiplexor are the one bit PWM output 

signals from my_pwm. The last input to this multiplexor is a 

constant ‘0’ bit, which will produce no tone on the buzzer. 

The selector for this multiplexor is the scan code that is 

outputted from my_ps2keyboard. Thus, pressing a 

qualifying key generates a unique tone that is sent to the 

buzzer. 

J. 2-to-1 multiplexors 

These 2-to-1 multiplexors are used to produce a sound on 

either the mono audio output or the buzzer, but not both at 

the same time. The selector for this multiplexor is a switch 

on the Nexys board. There is a multiplexor for AUD_SD, 

which will either enable or disable the mono audio output. 

There is also a multiplexor for the output to the buzzer. By 

correctly mapping the multiplexor inputs with ‘0’, the 

switch is used to control whether the mono audio output or 

the buzzer will be used to hear the tone. 

K. tempsensor_i2c 

This block handles interfacing with the temperature 

sensor and outputting 16 bits of data pertaining to the 

current temperature. This block consists of an 

fsm_tempSensor that configures the temperature sensor for 

16-bit mode and outputs either the low and high byte of the 

temperature or the status and ID. wr_reg_adt7420 handles 

I2C communication with the temperature sensor. There are 

also two 8-bit registers for the high and low byte of the 

temperature before these signals are outputted. 

L. wr_reg_adt7420 

This module controls I2C communication with the 

ADT7420 temperature sensor on board the Nexys board 

using the signals SCL and SDA.  A start bit, a read/write bit, 

and two eight bit buses relating to an address and data are 

provided as inputs, and eight bits of data are outputted.  In 

addition, there is an output done bit and an output err bit. 

The done bit is issued when the operation of either writing 

or reading data is completed. This circuit is meant to convert 

the timing protocols native to the ADT7420 temperature 

sensor into an I2C signal. For this protocol, the start 

condition is when there is a high-to-low transition on SDA 

while SCL is high. This will start the data transaction. The 

stop condition is when there is a low-to-high transition on 

SDA while SCL is high. For reading data from the 

temperature sensor, the master must write a 7-bit address for 

the ADT7420 followed by a write bit. The 

acknowledgement will come from the slave. The internal 

register address is provided next, followed by another 

acknowledgement from the slave. A repeated start condition 

is next, followed again by the device address, and a read bit. 

The acknowledgement comes from the slave and then the 8-

bit data comes from the slave. The master issues a not 

acknowledge on this data, and then the stop condition is 

asserted. This is accomplished through the use of three state 

machines, left shift registers, counters, basic logic gates, and 

buffers.  

The fsm_scl generates a clock signal, rising and falling 

edge detectors, and a delayed falling edge signal. The 

delayed falling edge signal is to allow data to be kept for a 

specific hold time as outlined by the manufacturer. The 

clock signal is connected to an active-low tri state buffer 

before going to SCL. The period of the clock signal is 

determined by the generic input SCL_T. Data is to be placed 

on this delayed falling edge and captured on rising edges. 

The fsm_ack detects the acknowledge bit which is sent by 

the I2C slave. If the acknowledgement does not arrive, an 

error signal on err is issued. If the acknowledgement bit has 

arrived from the slave, a done signal is set to high and used 

by fsm_main to know when the next write/read cycle can 

begin. 

The fsm_main complies with the I2C protocol by issuing 

various signals to the other components in this circuit. It is 

important to note that data is transferred with the MSB first 

so left shift registers are used.  

M. fsm_tempSensor 

This FSM configures the temperature sensor for 16-bit 

mode by writing 0x03 on the 0x80 internal register. This 

FSM also issues the addresses for either reading the high 

and low byte of the temperature or reading the status and 

ID. Signals for the I2C protocol are also issued and passed 

to wr_reg_adt7420.  

N. temp_decoder 

Four temp_decoder blocks are used as part of the 

datapath. Each decoder takes 4 bits as the input, which are 

the bits relating to the high and low temperature reading 

(odata_h and odata_l) after being split from 8 bits to 4 bits. 

The output of these blocks are 7 bits that correspond to 

which leds should be illuminated on the seven segment 

display to represent those 4 input bits in hexadecimal 

representation. The outputs are passed to a serializer block 

before being sent to the seven segment display. 

O. Mono Audio Output and Buzzer for Temperature Sensor 

The bits 7 downto 4 of odata_l are used to control the tones 

that are generated from the mono audio output and the 

buzzer. These bits are passed to my_audio and are used as 

the selector for the my_pwm outputs.  

III. EXPERIMENTAL SETUP 

The setup that was used in order to verify the 

functionality of the project was first to plan out how each 

signal would be produced. From there, each new component 

would be constructed and implemented. 

A keyboard file was first obtained from the course 

website. This file was studied and modified for the intent of 



this project. A serializer was then connected, followed by 

the mono audio output components, and then the buzzer 

components. Each step of the process was simulated and 

verified for accuracy. The same steps were followed for the 

temperature sensor. The preliminary file was obtained from 

the course website. Next, the serializer was built, followed 

by the audio outputs. 

The software Vivado 2018.3 was used during the creation 

of the program. The software allows the use of timing and 

functional simulations to verify the intended functioning of 

the project. The keyboard simulation was analyzed by 

creating a test bench of the overall keyboard file. The test 

bench consisted of two sample scan codes that may be 

produced by the keyboard. The output parameters were 

determined from the simulation. When the code initially did 

not produce the expected results, the functional simulation 

was used to trace signals and correctly identify the source of 

error. This allowed for deeper understanding of the 

hardware components and led to the creation of the 

fsm_keyup. Without this finite state machine, a tone would 

be generated and heard even after the key had been released. 

This allows for a tone to only be generated when one of the 

valid 15 keys are pressed. All other keys, as well as no key 

pressed, do not produce a tone.  

A testbench for the temperature sensor side of the project 

was also used to create a simulation. Instead of creating the 

I2C signals, the test bench began from providing data for 

odata_h and odata_l. From these simulations, desired results 

were verified.  

Although the simulations were showing the desired 

results, when the entire circuitry was tested on the Nexys 

board, there were issues in the mono audio output. All other 

aspects worked as expected. The code responded to inputs 

from the switches, placed information across the seven 

segment display, and generated a tone on the buzzer. It was 

later learned that the tri state buffers that were originally 

inside the my_audio component had to be removed. This 

was because the tri state buffers sit at the I/O peripherals. 

Instead, the output from these components for both the 

keyboard and the temperature sensor side were fed through 

a multiplexor, and this output was then the enable of a tri 

state buffer. 

The expected results are to generate tones only when a 

qualifying key is pressed on the keyboard or to generate 

tones continuously using the temperature sensor. A switch 

should choose between a tone heard through the buzzer or 

the mono audio output. Another switch should choose 

between the keyboard or the temperature sensor, and a third 

switch will choose between the temperature of the 

temperature sensor or the status and ID of the temperature 

sensor. The results are discussed in further detail in the 

following section. 

IV. RESULTS 

Figure 8 shows the simulation of the keyboard 

component and Figure 9 shows the simulation of the 

temperature sensor component.  

For the keyboard testbench, two scan codes were 

simulated. The first scan code was 0x1C which is for the 

letter “a” followed by the 0xF0 for the keyup scan code. The 

switches input was “100”, meaning to hear the output from 

the mono audio output from the keyboard. While the scan 

code is 0x1C, a valid key is being pressed. Thus, the signal 

dEn is ‘1’ and is enabling the keyboard_decoder and the 

frq_decoder. The output signal AUD_SD follows dEn 

exactly. The internal signal for AUD_PWM is a PDM signal 

changing between high and low states. The actual output is 

first passed through an active-low tri state buffer so the 

actual output changes between ‘0’ and ‘Z’ for high 

impedance as desired. The internal signal for the buzzer is a 

PWM signal. However, due to the input switches, the actual 

output on the signal buzzer is ‘0’ while the valid scan code 

is present. Once the keyup scan code is detected, this means 

that the key is no longer pressed. At this point, the dEn and 

AUD_SD signals go to ‘0’. The internal buzzer signal 

(signal b) also goes to ‘0’. The signal AUD_PWM is still 

changing, but since AUD_SD is ‘0’, this signal is not heard. 

For the temperature sensor testbench, instead of 

providing the I2C signals, one temperature was simulated. 

The arbitrary temperature was 0x12F6. The 4 bits that 

determine the tone of the output are “1111”. The switches 

input was “011”, meaning to hear the output from the buzzer 

from the temperature sensor. In practice, sw(2) should have 

been set to ‘1’, but it does not matter here for simulation 

purposes as the incoming data is provided from the 

testbench. The internal signal AUD_PWM is changing 

between high and low states. The actual output AUD_PWM 

is changing between low and high impedance states. 

However, since the switches are set to hear from the buzzer, 

AUD_SD is low and the PDM signal will not be heard. The 

simulation shows how the internal PWM signal (signal b) 

for the buzzer is the same as the actual output from the 

buzzer. From these simulations, it is also clearly seen that 

the output for the buzzer is a PWM signal while the output 

for the mono audio output is a PDM signal.   

The results were achieved by correctly integrating 

various hardware components and external peripherals as 

learned in class. The keyboard and temperature sensor are 

able to accurately generate tones from the buzzer and the 

mono audio output. A switch is used to toggle between 

these two modes. When a key is pressed on the keyboard, 

for only that time the appropriate figure appears across the 

seven segment displays and the tone is heard. After 

releasing the key, the seven segment display is empty and 

no tone is heard. Tones are continuously generated by the 

temperature sensor. As the temperature increased or 

decreased, the tones changed as desired. The tones are 

accurately heard either through the mono audio output or the 

buzzer, as indicated by another switch. A third switch 



chooses between either the temperature or the status and ID 

of the temperature sensor. The results were as expected, and 

all results were accounted for and explainable.  

CONCLUSIONS 

The main point that has been learned while doing this 

project is that communication protocols are powerful and 

useful methods to interface with external peripherals. It was 

also learned that such protocols can be effectively 

implemented in hardware, and the implementation should 

abide by the manufacturer’s specifications. After thorough 

testing for results, no issues remain to be resolved. The 

intended outcomes for this project were achieved. Further 

work could include the addition of generating tones using 

one direction of the on-board accelerometer. In addition, the 

RGB leds could be used to change colors based on the 

current tone that is being generated. There is no limit to 

other peripherals that could be added to this existing project. 

The number of different tones could also be expanded to 

include more keys from the keyboard and more bits from 

the temperature reading.  
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 Figure 1: High-level architecture of the entire system              

 

Figure 4: FSM to detect 

key up scan code 
Figure 5: FSM in 
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Figure 7: PWM signals with different frequencies 

Figure 2: Components in keyboard_test block. 
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Figure 3: Components in temperature_test block.  

 

 

 
Figure 8: Keyboard component simulation 
 

Figure 9: Temperature Sensor component simulation 

  


