
Connect Four Game

List of Authors (Fabrisio Ballo, David Herweyer, Ryan Thomas)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: fballo@oakland.edu, dherweyer@oakland.edu, rjthomas3@oakland.edu

Abstract—In this project a Connect Four game is created
in VHDL. The purpose of this project is to build a source
of entertainment, while also displaying what has been
learned throughout this semester. The main topic learned
from this project is how to interface the Nexys-4 DDR
Board with VGA display.

I. INTRODUCTION

The main motivating factor of this project is to create a
fun game everyone can enjoy, while displaying skills learned
from this course. The Connect Four game is simple, a seven
by six game board is displayed using VGA onto a screen, and
2 players are able to verse each other. This is a turn-based
game, and the first person to get at least four in a row wins
the game! To play the game the user will use the buttons on
an NES controller to choose where they want the token to fall,
the token will be displayed over top of the game board to
show where the player will drop. Once the player decides to
drop the token, a button is pressed, and the players turn ends.
A reset button is used to reset the game, once a player either
wins the game, ties the game, or at any time during the game.
Once a player wins the game a message that says “P1 WINS”
or “P2 WINS” will be displayed on the screen next to the
game board, depending on who won. After displaying the
winner on the screen, and once the game board is reset, the
seven-segment display will update the total of each players
wins and display it passively during the game. If the game
board gets full at any point, then the game will tie and neither
party will receive a win for that game.

A few topics integrated into the game were learned from
this course. Some of the topics include a finite state machine,
creating datapaths, VHDL code, and some VGA interface.
Although VGA was taught a bit in class, a majority of it was
learned outside of class to get the project to work as intended.
Since the project is a game, the only application of it would
be to have fun and enjoy the time spent playing the game!

Figure 1. Connect Four Flowchart

II. METHODOLOGY

A. Game Board Creation

The VGA code provided on the reference website was
used as a starting point for this project. The reference code
uses the in_RAMgen block in Figure 2 to read the contents
of a text file and initialize the data into the BRAM of the
Nexys 4 board.

Figure 2. Game Datapath

There are two significant limitations with the memory

storage. First it only accepts a square image file that has
dimensions that are a power of 2 and secondly it takes a very
long time to synthesize if the size of the image exceeds
32x32. For this reason, it was important to fit the image file
into as few of addresses as possible. This was accomplished
by assigning 1 bit per pixel indicating whether a pixel
changes color (value of 1) or retains its color (value of 0). By
setting up the game board this way, a 64x64 pixel board
position and 7 32x32 pixel letters were fit into 1024 addresses
which contain 16 bits or 16 pixels per address. The input text
file was generated using Excel so that the full game area
could be viewed and edited quickly until it was finalized.
Figures 3 and 4 show the creation of parts of the game board
in Excel.

Figure 3. Excel Gameboard Bitmap

Figure 4. Excel Number 2 Bitmap

B. VGA Display of Game Board

After storing the game board in BRAM, the next
challenge was piecing the image together on the display. In
order to do this, the VGA control block in Figure 2 was
created and used to map the memory address, pixel number,
color LUT, and input data source to the correct regions of the
screen using the hcount and vcount signals. These signals
give the horizontal position and vertical position on the
display. Each memory address is 16 bits wide and contain 16
pixels so the address location only increments after hcount
reaches 15. When vcount increments, the address increases
by either 64 for the piece position or 32 for each letter. The 4
least significant bits of hcount were used as inputs to a mux
to cycle through the 16 pixels in each address.

Changing the color of each position in the game board
was done by multiplying the input data by a value held in a
7x7 register array of 2 bit registers. Each register holds a
value that determines the multiplier that is applied to the input
data. The multiplier is a value from 1 to 3 and changes only
the pixels that were assigned a 1 in the memory. The result is
a 2 bit value from 00 to 11 that is used to select from one of
two LUTs containing 12 bit colors. This multiplier value is
only updated at the end of a frame when VS is low to avoid
changing only part of a piece. Updating the output registers
in this way required another 7x7 register array to store the
inputs values that are written while VS is high until the end
of a frame when the output registers are ready to be updated.

C. Game Logic

Once the interface for displaying the game board and
changing the color of the pieces was completed, the next task
was adding the game logic. The FSM block in Figure 2 is the
main component in the game logic and was implemented as
shown in Figure 5.

Figure 5. Game FSM

The first function of the FSM is initializing the game

board to empty on startup and on the event that the start
button is pressed. This was achieved by adding a synchronous
clear to the register arrays to clear both the input and output
registers. The next function is determining which player’s
turn it is. The P12 signal was added to accomplish this task.
This signal is inverted at the end of a turn so that the other
player can take their turn. The P12 signal is also used to
determine which multiplier value will be written to the
register array.

The third function is constraining a turn to only
intentional valid moves. To accomplish this goal the buttons
were prioritized so that there would not be multiple button
presses registered at once. This means that if two buttons are
held at the same time the higher priority button will be the
only one that the FSM acts on. There was also a 15 frame
delay added between updates when the left or right buttons
are held down so that the user can see the movement of the
piece above the board. If the drop button is pressed, the FSM

checks for a piece below the current position before moving
it down. If the next piece is not empty then the piece has
reached its final position. If piece never entered the game
board then the FSM will loop back to the current players turn
so that they can select a valid move. A 4 frame delay is built
in to the drop loop to make a visible dropping animation that
is more realistic.

The final function of the FSM is checking for a winner
and then updating the game display and scoreboard if there
is. An array of 4 input AND gates was added to the register
array block in Figure 2 to check for all possible win
conditions for both players. The FSM is needed to determine
whether a piece is in its final position when a win condition
is set. If it is then the FSM will set either the winr signal for
red or winb signal for black to high which will light up either
P1 WINS or P2 WINS on the sides of the game board and
increment the appropriate scoreboard.

D. NES Controller

The primary goal of interfacing the NES controller to the
connect four board, is to provide a more user-friendly
interface to the users. The NES controller primarily consists
of a parallel in serial out shift register connected to the 8
buttons on the face of the controller.

Figure 6. NES Controller

In order to interface with this shift register, 3

communication lines are required. The required timing must
follow the timing diagram seen below.

Figure 7. Timing Diagram [3]

In order to interface this controller to the game board a
control unit and datapath had to be created. First a 12 us pulse
has to be sent out in order to latch the button data on the
controller. Then the bits are shifted out 1 at a time at the end
of each pulse. The data line is read in at the falling edge of
each pulse seen in the timing diagram above.

Figure 8. NES Controller Datapath

In order to generate the required timings for the

controller, a 20 state FSM was created that used three
my_genpulse counters to time a 60 Hz refresh rate, a 12 us
latch, and each 6 us pulse. The FSM was implemented as seen
below.

Figure 9. NES Controller FSM

The results of the state machine that was implemented

can be seen in the test bench below where there is an initial
12 us pulse, followed by alternating high as low 6 us pulses.
On each of the low pulses, the register corresponding to the
appropriate button is enabled in order to read in the value.

Figure 10. NES Controller Testbench

E. Seven Segment Display

The seven segment display was added to show both
player’s win totals in decimal values from 0 to 99. To
achieve this, P1 and P2 were hard wired into 4 of the 8
seven segment displays and the other 4 were used to show
the score. The main game code outputs an 8 bit standard
logic vector for each score which is then converted to a
BCD value that is used to determine which segments of the
display to light up for the scores.

III. EXPERIMENTAL SETUP

Most of the main game code was checked for the correct
operation by viewing the output on a VGA display. The initial
game board for instance was verified by outputting it on VGA
as shown in Figure 11.

Figure 11. VGA Connect Four Board

It is not very practical to run the VGA interface in a

testbench due to the relatively long amount of time that it
takes for a full frame to be written. For this reason almost the
entire game code was tested iteratively on a VGA display
whenever a new feature was added in. Some signals were
temporarily hard coded to a value or mapped to a switch or
buttons on the Nexys 4 board so that a function could be
checked before the control circuitry was developed. The only
part that was verified using a testbench for the main game
code was the FSM. A special project containing only the FSM
and register array that it was in charge of updating was
created so that it could be isolated from the VGA timing and
tested for the correct functionality. The testbench created the
VS signal with a much smaller delay so that the simulation
would not take such a long time to run. During testing of the
FSM a button press of start, drop, left, and right were all
simulated and the register values were monitored to see if the
multiplier value moved to the correct location. It was
expected that when the right or left buttons were pressed, the
register column would increase or decrease by one and the
corresponding register would show the correct 2 bit number.
The expected result of pressing the drop button in the
testbench was that the value would move down row by row

until it reached the bottom of the game board. Last the start
button was expected to clear the contents of the register array.

The controller FSM was also tested using a testbench to
check the timing. The expectation was that the intended
enable signal would go high relative to the 3 clock signals
that were being generated.

The 7 segment display was tested by setting the inputs to
switches and viewing the results on the seven segment
display. Since a good portion of this code was provided it was
not necessary to create a testbench as one was already
included.

IV. RESULTS

The results of this project were overall positive. Many

problems were encountered early on but in the end the game
functioned exactly as intended. In Figure 12 below a player 2
(black) diagonal win is shown. Figure 13 shows a tie game
which doesn’t allow for any more moves other than restarting
the game. This is because the FSM will not allow a piece to
be dropped in a column that is already full.

Figure 12. Player 2 Diagonal Win

Figure 13. Tie Game Condition

The score also works correctly and is only reset if the reset
button is pressed. If a new game is started the score persists.

The most difficult issues to resolve were when a game
piece would inexplicably overwrite another piece. This issue
did not occur very often which added to the confusion. The
root cause of the overwriting issue was determined to be the
drop button press timing relative to VS. If the button was
pressed again before VS went low, then the output register
was not able to update and the FSM would not know there
was a piece there. This was corrected in the FSM by ensuring
that VS is low when the output register is read from in the
FSM.

V. CONCLUSION

Overall when working on this project a lot was learned
such as the importance of the sensitivity list in a process.
Another takeaway is that it is very important to verify each
part of a large VHDL project before moving on or it makes
debugging an issue extremely difficult. Also testbenches are
almost always worth the extra work when trying to debug a
complex state machine. Although the end goal was achieved
and everything worked as intended, there are a few
improvements that could be added to the project. There are
three main improvements that come to mind. The first is to
add a second NES controller to eliminate the need to pass the
controller back and forth and make the game feel a little more
fun. Next, a sound bit file of a physical game piece dropping

would be added to the game each time a player went their turn
to better simulate the feel of a real Connect Four game.
Lastly, with a lot more time, a whole game menu would be
added to allow a user to choose between a selection of games,
while still maintaining the player scores. This would make
the project feel more like an arcade style game.

VI. REFERENCES
[1] R. Haskell and D. Hanna, VHDL by example.

Auburn Hills: LBE Books, 2016.
[2] "Lesson 105 - Example 71: VGA Stripes",

YouTube, 2012. [Online]. Available:
https://www.youtube.com/watch?v=7j7brGz7u6M.
[Accessed: 12- Mar- 2019].

[3] https://tresi.github.io/nes/ (Needs fixed formatting)

