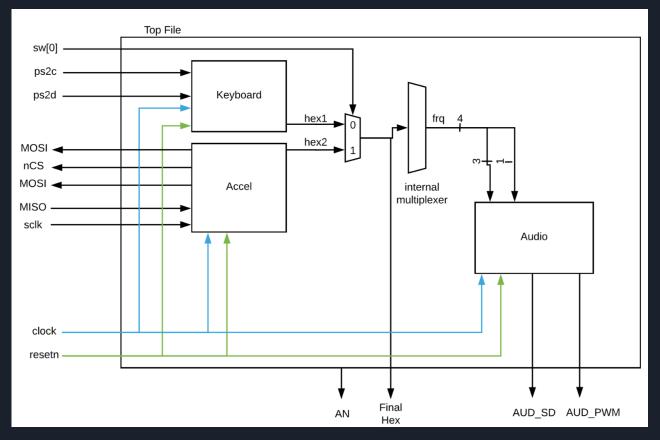
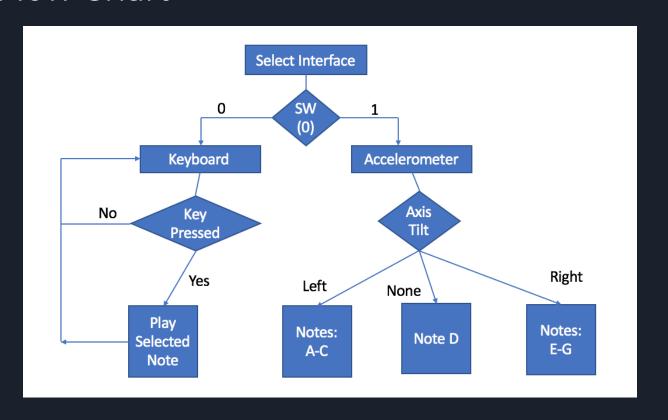

Matthew Bayer Nick Deneau James Khoury Logan Verstraete

Piano Simulator with Keyboard and Accelerometer Interface

Hardware Setup



Keyboard


Purpose

- Create a piano simulator using the Nexys4 board's audio output and a ps2 interface keyboard
- Use the Nexys4 board's built in accelerometer to control the audio output
- Can choose between either keyboard mode or accelerometer mode with switches

Block Diagram

Flow Chart

Code

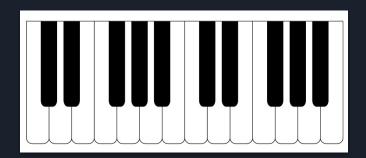
Four main files

- 1. pwm_audio: generates the note frequencies and outputs the sound
- ps2keyboard_top: takes user input and outputs a sound based on what key was pressed and displays the corresponding piano key on the seven segment display
- 3. top_accel: using only the x-axis accelerometer the Nexys board will output sounds based on the movement in the x direction. The 0 position is note d.
- 4. Project_top: connects the three files above in order to make the project work as one.

Sound

- The code produces tones by changing the time it takes for the duty cycle to go from 0 to 255
 - An equation dependent on the variable "frq" determines the time from 0 255
 - Changing the equation will produce a different frequency range
- The code was modified to have 16 tones instead of the original 8, then the frequency range of the tones was adjusted to produce better sounding notes
 - A variable "frq" from 0-15
 - Only 7 of the 16 tones were selected due to overall code design
- The duration of the note is determined by the number of times the duty cycle value reaches 255
 - This causes the lower frequency notes to be longer
- Notes can be played before another ends
 - The 0-255 count will reset if the current frq does not match the previous frq

Sound Simulation


Name	Value	0 ms			10 ms			20 ms	1	30) ms	1	40 ms		50 ms	1	60 ms	1	70 ms	1	80 ms
₩ resetn	1																				
₩ clock	0																				
₩ SD	0																				
> 🦬 frq[3:0]	0	0	$\supset \subset$	1	2	\supset	3	4	5	$= \!\!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	6	7	8	9	10	11	12	13	14	15	
[™] AUD_PWM	0																				
₩ AUD_SD	0																				
₩ T	10000 ps													1000	0 ps						

Name	Value	30,400 us	30,500 us	30,600 us	30,700 us	30,800 us	30,900 us	31,000 us	31,100 us	31,200 us	31,300 us
™ resetn	1										
¹la clock	0										
₩ SD	0										
> 📢 frq[3:0]	0					6					
™ AUD_PWM	0					wwwww	wwwwww				
₩ AUD_SD	0										
₩ T	10000 ps					10000	ps				

Keyboard¹

- Keystonotes: Inside this file the team set seven 8-bit numbers to a 7-bit number used for the seven segment display as well as for the frequency
- Ps2keyboard: Shifts 1 bit from ps2d until that data has 8 bits.
 Those 8 bits correlate to certain key on the actual keyboard

<u>Accelerometer</u>

- 1. FSM_accel: Used from Lab 3, be able to give correct input data into decoder
- 2. Wr_reg_axl362: Used to interface with from FPGA and accelerometer chip
- 3. Decoder: Used from Lab 3, be able to enable the correct register(data of x-axis)

Improvements

- Tuning the synthesizer to produce a full octave of notes from C-B, like on a piano
- Adding more keys, having 2 or 3 full octaves
- Having the notes be the same length, instead of the lower frequencies being longer

Demonstration!!!

Questions?