
Piano Simulator with Keyboard and Accelerometer Interface

Matthew Bayer, Nick Deneau, James Khoury, Logan Verstraete
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

mjbayer@oakland.edu, ndeneau@oakland.edu lpkhoury@oakland.edu, ldverstraete@oakland.edu

Abstract
The team's project is a piano simulator. The
project was constructed using Vivado,
VHDL code, the Nexys-4 FPGA board’s
built in accelerometer, a speaker, and a
keyboard. The purpose behind the project is
to use the keyboard to press a key that
corresponds to a specific note on the
keyboard using frequency control.
Frequency control was used to map eight
frequencies to corresponding keys on the
keyboard. The notes that are pressed will
also be displayed on the seven segment
display of the FPGA board. The second part
of the team’s project is using the Nexys-4
board’s accelerometer to control the audio
output.

 I. Introduction
The motivation behind the piano simulator is
to use the new knowledge learned in ECE
3710 combined with previous knowledge to
create a fun and creative way to play the
piano. The topics that were learned in this
class that can be applied is how to interface
the board with a speaker to output sound and
learning how to use the board’s built in
accelerometer. One topic that the team had
to learn on their own is how to interface the
keyboard to the FPGA board.

II. Methodology
A. Functionality
The project’s code can be broken down into
four main parts: The audio file that

generates eight frequencies, the keyboard
file that allows the user to press keys S-K to
generate sound, the accelerometer file that
allows the user to tilt the board to generate
sound, and the top file that connects all the
files together. The project is constructed to
have two different modes. With the use of a
switch (SW [0]) the mode of the project can
be controlled. When SW [0] is high the
project enters accelerometer mode and when
SW[0] is low the project is in keyboard
mode. Below is the flowchart and block
diagram of the overall scope of the project.

Figure 1: Flowchart

Figure 2: Block Diagram

B. Keyboard Interface [1]
The keyboard will allow the user to press the
designated seven keys in order to play the
notes that were generated from the audio
file. The initial goal was to press the
designated seven keyboard keys in order to
play the notes A-G in the middle “c” octave
of a piano. This will be done using the USB
connection on the FPGA board. The
keyboard keys used for the notes are S, D, F,
G, H, J, and K.

The file used is ps2keyboard. In the file the
data transferred between the the keyboard
usb input to the FPGA with ps2c and ps2d.
Ps2c is a clock alternating between 0 and 1
and is used to cycle the input data which is
called ps2d. Each data comes into the fpga
as a single bit. As each single comes into the
fpga it will wait for 10 data inputs. The start
bit will be ‘0’. After the start bit is inputted
then the data of the keyboard which 16 bits
is inputted. The 16 bits will input from least
significant but to most significant bit. After
the 16 bits is inputted, the ps2d will have
‘1’ for parity bit and ‘1’ for stop bit. As each
keyboard key is pressed the ps2c and ps2d
will repeat the process. Keys will be pressed
one at a time to insure the right data is being
transferred to the fpga.

Figure 3: Flowchart of Keyboard
Interface

C. Audio Output [2]

The audio output is enabled using the FPGA
board and the headphone jack located on the
board. This is enabled using the XDC file
and the notes are sent to it using PWM
signals. The AUD_PWM generated from
the tone control would be captured and
mapped onto a corresponding key.

In order to obtain these different frequency
notes the team modified the PWM: Tone
control Vivado project given to us by Dr.
Llamoca. The files contain various
components such as LUT, register, and tri
state buffer. The overall scope of this file is
to input a three bit frequency “number”, 0-7.
This 0-7 corresponds to 8 different
frequencies which gets outputted to the
AUD_PWM port on the FPGA board which
produces the sound. The file was modified
to produce 16 different frequencies. Seven
of the sixteen frequencies were selected due
to overall code design. [3]

The code changes the time it takes to adjust
the duty cycle of the output from 0-255. The
shorter the time the higher the frequencies.
The duration of a note was controlled by
how many times the duty cycle would reach
255. This would produce notes that had
different duration depending on their
frequency. Waiting for the duty cycle to
reach 255, five hundred times would
produce a note with a duration for about 2-3
seconds.

D. Accelerometer
From lab 3 the team used the accelerometer
code, more specifically wr_reg_axl362,
FSM_accel, decoder, and register. The FSM
uses a counter used to specify which data is
being inputted such as the temperature and
accelerometer. Using i and j to specify what
register is being enabled for the data from
wr_reg_axl362. Using the decoder the data
from the FSM transfers the enable is used to

store the wr_reg_axl1362 data into the
register. There are seven cases that decide
what note is being played. The cases depend
on the certain range of data from the
register. The cases range as the highest
positive number being A. While the positive
number decreases the notes plays B, then C,
and then D. As the negative value increasing
the notes play E, F, G, where G is the
highest negative value.

E. Top File
The project_top file combines the code
together to create the project. The audio
files, keyboard files, and accelerometer files
are all port mapped into the top file. Also,
there is an internal multiplexer which uses
the keyboard variable hex (which states
which key is pressed) as the selector for
which frequency is inputted into the audio
file (which then outputs the sound). So as
each key is chosen the corresponding
frequency (if applicable) is sent into the
sound file. The accelerometer file is also
port mapped into the top file to enable the
use of the accelerometer as a piano key
selector. Switch 0 on the Nexys 4 board is
used as the selector for whether they
keyboard is being used or the accelerometer.
The top file incorporates a “when” statement
to select which user interface is being used.

III. Experimental Setup
The setup that the team will use to verify the
functionality of the project is to connect a
speaker to the FPGA board, match the notes
frequency with the note notation on the
seven segment display. The software used
will be VHDL coding in Vivado and the
hardware used will be a FPGA board,
keyboard, computer, and speaker. The
expected results are to hear the correct notes
output of the board with the correct notation,
and to play a song.

IV. Results
The team successfully implemented multiple
different applications of what was learned in
ECE 3710. The keyboard interface worked
as planned including the use of the seven
segment display of the notes being played.
The audio files outputted the correct notes at
the right time. The frequencies could have
been tuned a bit more, but the team
concluded that the tuning could have one of
the improvements made in the future. By
adding the accelerometer, another aspect of
the course was successfully implemented
into the project. Also, this added a bit more
complexity to the code implementation.

Figure 4: Simulation Snippets

V. Improvements
Some ways to improve the sound
synthesizer would be:

● Tune the synthesizer to produce a
full octave of notes from C-B

● Utilize more keys to have a
synthesizer of 2-3 complete octaves

● Modifying the duration of the notes
so that the notes are all the same
length

VI. Conclusion
In conclusion, the project produced a good
learning curve for the team. By learning
about the PWM Tone Control, the team was
above to successfully alter the code to
produce 16 different output sounds, from

which 7 were chosen to be used as notes
A-G. The keyboard worked as planned.
The accelerometer added a different aspect
to the project that allowed the team to add a
different way to play a note while using
knowledge learned in the lab portion of the
class. Overall, this was a very successful
project.

References
VHDL Tutorials on class website “PS/2
Keyboard Controller” [1]

VHDL Tutorials on class website “PWM:
Tone Control” [2]

Moodle Notes Unit 3 [3]

