
microProcessor Dice Game

By: Matthew Guirguis and Chris Mathewson

Description This dice game incorporates fighting game mechanics

like hitting and dealing damage. The goal is to roll a

higher attack roll than the enemy armor class. Once

that is true, the ability to deal damage is available.

The microprocessor is able to handle multiple

instructions calculating rolls using different character

stats.

On the side chance that a perfect 20 out of 20 is

rolled, the attack roll is instantly won, and double

damage is dealt.

Stats STRENGTH - how strong you are

DEXTERITY - how quick you are

INTELLIGENCE - how smart you are

WISDOM - how aware you are

CHARISMA - how attractive you are

PROFICIENCY - your level bonus

ENEMY ARMOR CLASS - how hard your enemy is to hit

microProcessor The microProcessor includes a memory ram emulator,

nbit adder, an x register, an rsum register, an rout

register, a flag register, a dice roller, a comparator and

uP control file. There is also a mux with selector for

the outputs

uProcessor

Control uP The control uP, is a finite state machine. There are 3

main states, 4 atk states for the roll, 3 compare states

to determine how much health the enemy has, and 4

damage states to determine whether the hit was a

critical hit.

uProcessor
FSM

Instruction
FSM

Dice Roller The dice roller uses 6 modulo counters on a decoded

enable. The output of each is sent to a multiplexer and

selected by using the same enable code. The result is

a set of a four, six, eight, ten, twelve, and twenty-sided

dice for individual use.

Dice
Roller

Assembler The Assembler includes a left shift register,

instruction decoder and input finite state machine.

The purpose of the assembler is to convert the ps/2

codes received from the keyboard into machine code

for the microprocessor to understand.

Assembler

Assembler
FSM

Dice Instruction
List

Instruction Machine Code

ROLLS 1110_0000

ROLLD 1110_0001

ROLLI 1110_0010

ROLLW 1110_0011

ROLLC 1110_0100

Damage Instruction
List

Instruction Machine Code

DMGDG 1111_1000

DMGSB 1111_1001

DMGLS 1111_0010

DMGGS 1111_0100

DMGAX 1111_0010

DMGGA 1111_0100

DMGWH 1111_0100

DMGCB 1111_1011

DMGLB 1111_1010

Store Instruction
List

Instruction Machine Code

STR op 000 op

DEX op 001 op

INT op 010 op

WIS op 011 op

CHA op 100 op

PRF op 101 op

EAC op 110 op

Instruction
Format

PS2keyboard The ps2kyboard enables the use of a serial keyboard

connected to the FPGA. The keyboard gets used to

input the data by using PS/2. The PS2kyboard

includes a genpulse file, parallel access shift register,

ps2 filter, and d-flip-flop file.

PS2

keyboard

Falling Edge Detector PS/2 Keyboard
Main FSM

Output The output file controls what is being outputted. This

includes a text loader, UART transmitter, a transmitter

register, uP left shift register, ps2 to ascii, and binary

to ascii file.

Output

Output
Keyboard
To
Serial
FSM

PREDEFINED TEXT TO
SERIAL FSM

uProcessor
Output
To
Serial
FSM

UART_TX We used uart to transmit the signals to and from the board.

We used a program called Putty as the source terminal for

the UART protocol. This program asks for the speed and

which COM port it is connected to. The baud rate is

represented in the output control by setting the UART_TX

fsm to 10416 clock ticks per read. After that no other

information is needed to start up the source terminal.

UART_TX
FSM

Top Level

TESTBENCH

TESTBENCH

Any Questions?

