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Abstract—The goal of the project is to design a 
microprocessor that can handle a D&D dice game 
that will receive instruction lines from a keyboard 
input and have data output through UART protocol. 
 
I.         Introduction 
 

The main concept of the project is based on a 
roleplaying system called Dungeons and Dragons 5th 
edition. The idea is that you roll a twenty-sided dice, 
use modifier values, and see if you can roll higher than 
a specific value. The player has an array of statistics 
that can be used to modify the rolls placed in memory, 
The goal of the mini-game is to roll higher than the 
enemy armor class in order to do damage in what is 
called the attack roll. Once the attack roll is decided to 
be higher or lower than the enemy armor class, the 
player is allowed to do damage. In the special case that 
the player rolls a perfect 20 out of 20, the game in 
instantly won and damage is doubled.  

 
 
II.          Methodology 
 

The main approach to implementing the 
mini-game was to use a microprocessor to handle all of 
the calculations using an 8-bit instruction set. The 
assembly code is input and converted into machine 
code via a PS/2 keyboard input and an asynchronous 
PS/2 code to machine code instruction decoder. The 
player is then displayed predefined text depending on 
the situation that is determined by preset values based 
on the instruction used and the result obtained over the 
serial UART communication to a PC. 

 
 
 
 
 
 
 
 

 

A. PS/2 Keyboard Input 
 

 
Figure 1. Falling Edge Detector 
 

The keyboard functionality is intended to do 
two things: To show the command line being typed and 
to create a signal for the dice to be randomly rolled. 
Instructions will be decoded and immediately handled 
for the sake of simplicity rather than being stored in 
memory. A falling edge detector is used on the ps2c in 
conjunction with a modulo-10 counter to store the 
incoming serial PS/2 code inside an 10-bit right-shift 
register. An 8-bit right-shift register filter is used on the 
PS/2 clock to eliminate any noise, and data is received 
from the ps2d. Once the finite state machine has 
proceeds through 10 clock cycles, a done signal is sent 
out, and the PS/2 code is successfully stored inside a 
right-shift register. The first eight bits are then 
transferred to the assembler. 
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Figure 2. Main Keyboard FSM 

B. Assembler 
To store the assembly code, a 48-bit left-shift 

register is shifted by four to accumulate a total of 6 
characters. Using the incoming PS/2 data, when the 
done signal is received from the PS/2 keyboard input. 
the data is checked to see if it is enter, x”5A”. If it is, a 
start signal is sent to the microProcessor to start the 
instruction set. The 48-bit register data is sent through 
an asynchronous instruction decoder that directly 
translates from PS/2 code into machine code and sent to 
the microprocessor simultaneously. Once a ke-up code, 
x”F0” is found, the start signal is returned to zero, and 
the microprocessor is able to continue through its states. 

C. microProcessor 

1. Machine Code 
The microprocessor is intended to handle 21 

different instructions that get divided into three 
different categories. One set of instructions specifically 
handles writing data into memory. Another set of 
instructions handles doing the initial attack roll, which 
is the first part of the mini-game. These instructions 
include a dice roller, a register, an adder, and a 
comparator for flags. The last set handles the damage 

rolls, which uses different kinds of dice depending on 
the instruction given that is subtracted from a set value 
in memory.  
 

 
Figure. 3: Roll Instruction Format 
 

In the roll instruction set, the first four bits are 
used the opcode, “1110”, the 5th bit is used as an error 
check bit, and then last three bits are used as the 
memory address of the modifier used in the roll. The 
error bit was chosen due to the limitation of the 8-bits 
used, and it was the only bit that left every other 
instruction unmodified, effectively allowing for a no 
operation instruction. 
 

Figure 4. Damage Instruction format. 
 

The damage instruction set is similar in that it 
has a four bit opcode, “1111.” The 5th bit used for the 
address of either the strength or dexterity modifier, and 
the last three bits are used as the enable for the dice 
roller. 

 

 
Figure 5. Stat Instruction Format 
 

Lastly, the stat instruction only uses three bits 
for the opcode in order to increase the possible values 
stored in memory up to 31 in decimal by allowing a 
5-bit operand to be used 
 
 
 

 

 



2. Implementation 

The initial state of the microprocessor waits 
for the start signal. Once received, the machine code is 
stored inside of an IR register, and the dice roller is 
enabled.  

The dice roller is a set of 6 modulo counters 
set at different pulse timing. An enable decoder and 
multiplexer are then used to decide which die to use for 
the instruction.  

An X and SUM register are then used to load 
the different modifiers from memory and add them 
together. In the case of an attack roll, before the data is 
sent to the output register, the data is compared with the 
enemy armor class value stored in memory to set the 
flag register. Being sent through a comparator, if the 
different of the attack roll and the armor class is at least 
zero, the hit flag is raised, allowing for the damage 
instruction to be used. On the chance that the innate roll 
is a perfect twenty, the hit flag and crit flag are 
immediately raised. 

The damage instruction when received checks 
to see if the hit flag is raised. If it is, it proceeds to use 
the die chosen and add only the stat modifier to the roll 
and output it. If the crit flag is raised, the damage roll 
goes through an extra process to add another roll of the 
die chosen to the output register. After the instruction is 
finished, the flag register is then cleared. 

In the final instruction set, data is stored 
directly from the operand in the machine code and 
stored in memory using the opcode as an address. 

After any instruction is executed, the 
microprocessor then waits for the output FSM to finish 
loading the text to serial and then returns to idle. 
 
D. Output Control 

The three main purposes of the output control 
are to first, prior to any execution of assembly code, to 
directly convert PS/2 code to ASCII and transmit 
through serial; this is done by waiting for the done 
signal from the PS/2 keyboard control and serialize the 
8-bit data that is stored in a register. The second 
purpose is to load the predefined text for the instruction 
used from emulated ROM. This is done by using an 
index and offset for each instruction. Once the text is 
fully loaded from the ROM, if the instruction and flag 
allow, the data in the output register from the 
microprocessor is converted from binary to ASCII and 
stored in a 16-bit register. The register is shifted eight 
bits as it is transmit through serial. The output control 
then transmits the proper new-line and carriage return 
ASCII commands, x”0A” and x”0D.” Once the serial 

data is sent, a done signal is sent back to the 
microprocessor, allowing it to return to idle and accept 
any new assembly lines. 
1.  UART TX 

In order to transmit data successfully over a 
serial line, a constant high is sent through the UART to 
represent an idle state. Once the UART_TX is about to 
transfer 8-bits of data, a zero is sent as the start bit. 
Eight bits are transmit individually every 10416 clock 
cycles to create a 9600 baud rate that the serial port on 
the PC can understand. The transmission is ended with 
a stop bit that is high, and the serial signal returns to 
idle and awaits the next start bit. 

II.         Experimental Setup 

 The Nexys 4 DDR FPGA board is to be used 
alongside the PS/2 emulated keyboard input with a 
serial output using UART serial protocol. A PC will be 
used to read the outputs from the board. To display the 
serial communication between the board and the PC, a 
program called PuTTY is used to create the receiving 
baud rate and convert the ASCII characters to the letters 
and numbers that are shown on the screen. On the 
physical board, the lower 8 LEDs are used as the 
microprocessor’s output, and the higher LEDs are used 
to represent the machine code that is stored in the 
microprocessors IR register. A blue LED is used for the 
start signal, a green LED is used for the hit flag, and red 
LED is used for the crit flag. 

III.       Results and Conclusions  
As a finished product, the board effectively 

executes each line of assembly code without fail. The 
data is transmit successfully over a serial port, and the 
flags and machine code are properly represented on the 
board as intended. The only unintended issue occuring 
is sometimes the enter key must be held down for a 
longer period than intended to successfully load the text 
from the ROM. If the key is not held down long 
enough, the microprocessor may not fully reset. In this 
case, the microprocessor gets stuck somewhere in the 
middle of its execution, and the enter key must be held 
down once again to successfully reset it back to idle. 

During the development of the project, 
however, many different steps had to be taken to 
readjust and evaluate the design. During the first 
creation the microprocessor, the instruction format was 
changed several times to allow the best possible usage 
of each bit and to fulfill the necessary requirements of 
that instruction. 

 



The largest issue was the discovery of the 
second PS/2 code sent after the upcode. Because of the 
second transmission, the initial input FSM design 
would not leave the start phase. To fix this, a secondary 
state had to accept the PS/2 code after the upcode and 
ignore it. 

When tackling the development of the 
microprocessor, the concept of how exactly much work 
goes into a processor became a very arduous task. Each 
instruction had to be individually coded within the 
microprocessor and output control, making the finite 
state machines lengthy in VHDL code. All of the data 
conversions had to be hardcoded; when writing the 
predefined text, each character had to be individually 
defined in ASCII in the ROM, which also took an 
extended amount of time. 

Overall, the project enlightened the team to 
how much work goes into just a simple microprocessor, 
let alone a fully operational CPU. The project proved to 
be a major stepping stone in gaining further processing 
hardware knowledge and development and to develop 
new techniques for the designing process. 

 
 

 
 
Figure 6. Top Level Design 
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Figure 7. MicroProcessor Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 



Figure 8. MicroProcessor FSM 

 



 
 
 
 

 
Figure 9. Instruction Roll and Damage FSM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Figure 10. Dice Roller Design 
 
 
 

 
Figure 11. Roll Instruction List 
 
 
 
 
 
 

 

 

Figure 12. Damage Instruction List 
 
 

 



 
 
Figure 13. Stat Instruction List 
 

Figure 14. PS/2 Keyboard Control Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
Figure 15. Assembler Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Figure 16. Assembler FSM 
 
 
 
 
 

 
 
 
 
 
 

 



 
Figure 17. Output Control Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Figure 18. Output FSM Part 1 
 

 
 

 



Figure 19. Predefined Text to Serial FSM 
 

 

 
 
 

 



 
 
 
Figure 20. MicroProcessor Output to Serial FSM 
 
 

 
 
 
 
 
 

 



 
Figure 21. UART_TX FSM 

 
 
 

 
 

 



Figure 22. PS/2 Key to Serial and Instruction Decoder 
Test Bench 
 
 
 
 

Figure 23. P and Serial Output TestBenchμ  
 
 

 


