
microProcessor Dice Game
Designed in VIVADO & Implemented on NEXYS 4 DDR FPGA Board

Matthew Guirguis, Christopher Mathewson
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

 mgguirguis@oakland.edu, cmathewson@oakland.edu

Abstract—The goal of the project is to design a
microprocessor that can handle a D&D dice game
that will receive instruction lines from a keyboard
input and have data output through UART protocol.

I. Introduction

The main concept of the project is based on a
roleplaying system called Dungeons and Dragons 5th
edition. The idea is that you roll a twenty-sided dice,
use modifier values, and see if you can roll higher than
a specific value. The player has an array of statistics
that can be used to modify the rolls placed in memory,
The goal of the mini-game is to roll higher than the
enemy armor class in order to do damage in what is
called the attack roll. Once the attack roll is decided to
be higher or lower than the enemy armor class, the
player is allowed to do damage. In the special case that
the player rolls a perfect 20 out of 20, the game in
instantly won and damage is doubled.

II. Methodology

The main approach to implementing the
mini-game was to use a microprocessor to handle all of
the calculations using an 8-bit instruction set. The
assembly code is input and converted into machine
code via a PS/2 keyboard input and an asynchronous
PS/2 code to machine code instruction decoder. The
player is then displayed predefined text depending on
the situation that is determined by preset values based
on the instruction used and the result obtained over the
serial UART communication to a PC.

A. PS/2 Keyboard Input

Figure 1. Falling Edge Detector

The keyboard functionality is intended to do
two things: To show the command line being typed and
to create a signal for the dice to be randomly rolled.
Instructions will be decoded and immediately handled
for the sake of simplicity rather than being stored in
memory. A falling edge detector is used on the ps2c in
conjunction with a modulo-10 counter to store the
incoming serial PS/2 code inside an 10-bit right-shift
register. An 8-bit right-shift register filter is used on the
PS/2 clock to eliminate any noise, and data is received
from the ps2d. Once the finite state machine has
proceeds through 10 clock cycles, a done signal is sent
out, and the PS/2 code is successfully stored inside a
right-shift register. The first eight bits are then
transferred to the assembler.

mailto:mgguirguis@oakland.edu
mailto:cmathewson@oakland.edu

Figure 2. Main Keyboard FSM

B. Assembler
To store the assembly code, a 48-bit left-shift

register is shifted by four to accumulate a total of 6
characters. Using the incoming PS/2 data, when the
done signal is received from the PS/2 keyboard input.
the data is checked to see if it is enter, x”5A”. If it is, a
start signal is sent to the microProcessor to start the
instruction set. The 48-bit register data is sent through
an asynchronous instruction decoder that directly
translates from PS/2 code into machine code and sent to
the microprocessor simultaneously. Once a ke-up code,
x”F0” is found, the start signal is returned to zero, and
the microprocessor is able to continue through its states.

C. microProcessor

1. Machine Code
The microprocessor is intended to handle 21

different instructions that get divided into three
different categories. One set of instructions specifically
handles writing data into memory. Another set of
instructions handles doing the initial attack roll, which
is the first part of the mini-game. These instructions
include a dice roller, a register, an adder, and a
comparator for flags. The last set handles the damage

rolls, which uses different kinds of dice depending on
the instruction given that is subtracted from a set value
in memory.

Figure. 3: Roll Instruction Format

In the roll instruction set, the first four bits are
used the opcode, “1110”, the 5th bit is used as an error
check bit, and then last three bits are used as the
memory address of the modifier used in the roll. The
error bit was chosen due to the limitation of the 8-bits
used, and it was the only bit that left every other
instruction unmodified, effectively allowing for a no
operation instruction.

Figure 4. Damage Instruction format.

The damage instruction set is similar in that it
has a four bit opcode, “1111.” The 5th bit used for the
address of either the strength or dexterity modifier, and
the last three bits are used as the enable for the dice
roller.

Figure 5. Stat Instruction Format

Lastly, the stat instruction only uses three bits
for the opcode in order to increase the possible values
stored in memory up to 31 in decimal by allowing a
5-bit operand to be used

2. Implementation

The initial state of the microprocessor waits
for the start signal. Once received, the machine code is
stored inside of an IR register, and the dice roller is
enabled.

The dice roller is a set of 6 modulo counters
set at different pulse timing. An enable decoder and
multiplexer are then used to decide which die to use for
the instruction.

An X and SUM register are then used to load
the different modifiers from memory and add them
together. In the case of an attack roll, before the data is
sent to the output register, the data is compared with the
enemy armor class value stored in memory to set the
flag register. Being sent through a comparator, if the
different of the attack roll and the armor class is at least
zero, the hit flag is raised, allowing for the damage
instruction to be used. On the chance that the innate roll
is a perfect twenty, the hit flag and crit flag are
immediately raised.

The damage instruction when received checks
to see if the hit flag is raised. If it is, it proceeds to use
the die chosen and add only the stat modifier to the roll
and output it. If the crit flag is raised, the damage roll
goes through an extra process to add another roll of the
die chosen to the output register. After the instruction is
finished, the flag register is then cleared.

In the final instruction set, data is stored
directly from the operand in the machine code and
stored in memory using the opcode as an address.

After any instruction is executed, the
microprocessor then waits for the output FSM to finish
loading the text to serial and then returns to idle.

D. Output Control

The three main purposes of the output control
are to first, prior to any execution of assembly code, to
directly convert PS/2 code to ASCII and transmit
through serial; this is done by waiting for the done
signal from the PS/2 keyboard control and serialize the
8-bit data that is stored in a register. The second
purpose is to load the predefined text for the instruction
used from emulated ROM. This is done by using an
index and offset for each instruction. Once the text is
fully loaded from the ROM, if the instruction and flag
allow, the data in the output register from the
microprocessor is converted from binary to ASCII and
stored in a 16-bit register. The register is shifted eight
bits as it is transmit through serial. The output control
then transmits the proper new-line and carriage return
ASCII commands, x”0A” and x”0D.” Once the serial

data is sent, a done signal is sent back to the
microprocessor, allowing it to return to idle and accept
any new assembly lines.
1. UART TX

In order to transmit data successfully over a
serial line, a constant high is sent through the UART to
represent an idle state. Once the UART_TX is about to
transfer 8-bits of data, a zero is sent as the start bit.
Eight bits are transmit individually every 10416 clock
cycles to create a 9600 baud rate that the serial port on
the PC can understand. The transmission is ended with
a stop bit that is high, and the serial signal returns to
idle and awaits the next start bit.

II. Experimental Setup

 The Nexys 4 DDR FPGA board is to be used
alongside the PS/2 emulated keyboard input with a
serial output using UART serial protocol. A PC will be
used to read the outputs from the board. To display the
serial communication between the board and the PC, a
program called PuTTY is used to create the receiving
baud rate and convert the ASCII characters to the letters
and numbers that are shown on the screen. On the
physical board, the lower 8 LEDs are used as the
microprocessor’s output, and the higher LEDs are used
to represent the machine code that is stored in the
microprocessors IR register. A blue LED is used for the
start signal, a green LED is used for the hit flag, and red
LED is used for the crit flag.

III. Results and Conclusions
As a finished product, the board effectively

executes each line of assembly code without fail. The
data is transmit successfully over a serial port, and the
flags and machine code are properly represented on the
board as intended. The only unintended issue occuring
is sometimes the enter key must be held down for a
longer period than intended to successfully load the text
from the ROM. If the key is not held down long
enough, the microprocessor may not fully reset. In this
case, the microprocessor gets stuck somewhere in the
middle of its execution, and the enter key must be held
down once again to successfully reset it back to idle.

During the development of the project,
however, many different steps had to be taken to
readjust and evaluate the design. During the first
creation the microprocessor, the instruction format was
changed several times to allow the best possible usage
of each bit and to fulfill the necessary requirements of
that instruction.

The largest issue was the discovery of the
second PS/2 code sent after the upcode. Because of the
second transmission, the initial input FSM design
would not leave the start phase. To fix this, a secondary
state had to accept the PS/2 code after the upcode and
ignore it.

When tackling the development of the
microprocessor, the concept of how exactly much work
goes into a processor became a very arduous task. Each
instruction had to be individually coded within the
microprocessor and output control, making the finite
state machines lengthy in VHDL code. All of the data
conversions had to be hardcoded; when writing the
predefined text, each character had to be individually
defined in ASCII in the ROM, which also took an
extended amount of time.

Overall, the project enlightened the team to
how much work goes into just a simple microprocessor,
let alone a fully operational CPU. The project proved to
be a major stepping stone in gaining further processing
hardware knowledge and development and to develop
new techniques for the designing process.

Figure 6. Top Level Design

IV. References
[1] Daniel Llamocca, Oakland University. PS/2
Keyboard Emulation
[2] Dungeons & Dragons 5e, Wizards of the Coast.
Dungeons and Dragons 5e Player’s Handbook.
[3] “UART, Serial Port, RS-232 Interface.” UART in
VHDL and Verilog for an FPGA,
“www.nandland.com/vhdl/modules/module-uart-serial-
portrs232.html”

Figure 7. MicroProcessor Design

Figure 8. MicroProcessor FSM

Figure 9. Instruction Roll and Damage FSM

Figure 10. Dice Roller Design

Figure 11. Roll Instruction List

Figure 12. Damage Instruction List

Figure 13. Stat Instruction List

Figure 14. PS/2 Keyboard Control Design

Figure 15. Assembler Design

Figure 16. Assembler FSM

Figure 17. Output Control Design

Figure 18. Output FSM Part 1

Figure 19. Predefined Text to Serial FSM

Figure 20. MicroProcessor Output to Serial FSM

Figure 21. UART_TX FSM

Figure 22. PS/2 Key to Serial and Instruction Decoder
Test Bench

Figure 23. P and Serial Output TestBenchμ

