
Melody Generator

Victor Wszedybyl and Kevin Kiliman

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: vcwszedybyl@oakland.edu, kpkiliman@oakland.edu

Abstract—This project is a recreation of a melody generator,

using a Nexys 4 DDR board and an audio speaker. It serves the

purpose of allowing a user to create sound melodies. The

switches function as keys on a keyboard and correspond to

individual notes that can be modified in the program. The tone

of each note can be changed to create a desired melody. These

melodies are then played through the attached speaker.

I. INTRODUCTION

This project will cover the necessary architecture to
create a melody generator on a Nexys 4 DDR board.

The motivation behind the project was to be able to
create different sounds using switches on the nexys board
and output them through a connected speaker to allow the
user to create their own melodies. The project will
incorporate the class topics of pulse width modulation
(PWM) signals and outputting a signal through a speaker.
This project would allow anyone with a Nexys 4 board and a
simple speaker to make any sound melodies of their
choosing and modify with any of the available switches and
buttons.

II. METHODOLOGY

There are 16 available switches on the Nexys 4 board
that have the potential to play a note. There are also 4
buttons being used on the board. These buttons are Save,
Play/Pause, Increment Frequency, and Reset. Turning a
switch to the “On” position will activate it and then allow the
user to save a note to it once a frequency is chosen and the
user hits the save button. The user can program a total of 16
different notes but if a note is never programmed it is
skipped over. This allows our note generator to have a
melody duration anywhere from 1 to 16 notes. An LED
above the switch is lit up as the Nexys4 plays that note. This
is a visual cue so the user can tell what switch is being
played at what time. The attached speaker is used to output
the melody saved. All functional coding is done in VHDL on
the Nexys board.

A. Play/Pause Button FSM

The play/pause button is designed to toggle between two
states. In order to do this, a finite state machine (FSM) is
used. The function of the FSM is to not allow another state
transition until the button is released and then pressed again.
A diagram representing this FSM is shown below.

Each possible output in the FSM has two states.
Beginning at the top of the FSM diagram, the circuit is in the
pause state. The circuit goes into the play state when the
button is pressed and will remain in this state until the button
is released. After the button is released, the circuit is ready
for the button to be pressed again to transition to the pause
state. The same thing occurs when waiting for the button to
be released before becoming ready to switch back to the play
state.

B. Clock Divider

The clock divider in the circuit is used to convert the base
clock MHz frequency of the Nexys 4 DDR to a smaller
frequency so a user has time to hear that sound. This is used
to set the tempo of the melody generator. This has the
possibility to be modified to change the BPM or beats per
minute.

C. Counter

 This project incorporated two counters. One is three bits

and the other is four. The three-bit counter is used to cycle

between possible notes, and the four bit counter plays

through the 16 switches on the nexys4 board. Using flip-

flops, we can cycle through the numbers to output a three or

four-bit binary number. When the counter enable is high, it

will increase the number by 1 on the rising edge of clock.

Each flip-flop represents a single bit being stored. Every

time the counter is supposed to increment, the flip-flop that

represents the least significant bit will toggle. The rest of the

flip-flops will toggle once all of the bits below them are

equal to one. When the counter reaches the highest possible

number, it will reset back to zero when incremented next.

D. Debouncer

 Due to the nature of push buttons on the Nexys 4 DDR

FPGA board, a button debouncer is required for two of our

buttons (Play/Pause and Increment) When pressed, an ideal

button’s contacts would touch together exactly once, and

stay together until the button is released. However, real

buttons like the ones found on the Nexys 4 DDR, have

contacts that have a tendency to “bounce” multiple times.

When a button bounces the contacts will come in and out of

contact several times before staying together. In context of

this project, this bouncing could lead to a play/pause button

which switches several times between the two states when

the button is pressed, or incrementing the frequency more

than once when it is not desired. In order to avoid this, the

debounce circuit connected to our four buttons will wait a

certain amount of time after the input is pushed to check if it

stays in a constant state.

E. Previous State Checker

 As long as they are enabled, the counters in this project

will increment along with a predetermined clock frequency.

For some functions, such as pressing the button to increment

the frequency of the current tone, it would be ideal to

increment a counter only one time with each button press.

To do this, converting the input to a pulse with a duration of

one clock cycle is required. This is the function of the pulse

generator. When the input of the pulse generator goes high,

its output goes high for exactly one clock cycle. This is

accomplished by checking the current input for a given

rising edge of the clock, as well as checking the previous

input for the last rising edge of the clock. The output is high

when the current input is high and the previous input is low.

Otherwise, the output is low. A behavioral model is used to

do this in VHDL. This is done so when pressing the button,

it will only increment to one higher frequency.

PWM Tone Generator

 This function of this component is to generate a square

wave based on a 4-bit input. This is done by dividing the

input clock signal by a specific number to achieve the

desired frequency. This frequency then determines when the

output is toggled on and off. For this project, there are seven

predetermined frequencies which represent the notes from A

to G on a musical scale. The frequencies for these tones

range from 405 Hz to 862 Hz to represent notes G# to A. If

the input is 0000 in binary, then no square wave is played.

III. EXPERIMENTAL SETUP

The hardware used in this project was included a Nexys 4
DDR board, a speaker, and cables to deliver a signal from
the board to the speaker. The software used was Vivado and
all of the code was created in VHDL.

The final results were as expected. Each button, switch,

and LED worked as it should. The desired sound output
through the speaker also matched the user input.

This is a chart matching the number being displayed on

the seven-segment Display. This allows the user to see what
note is being played when they change the frequency.

REFERENCES

[1] Llamocca, Daniel. “DIGITAL SYSTEM DESIGN VHDL Coding for
FPGAs Unit 7.” RECRLab, Electrical and Computer Engineering
Department, Oakland University,
www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[2] “Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics.”
Xilinx.com, Xilinx, Inc., 13 Apr. 2017,
www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_
Data_Sheet.pdf

[3] “VHDL Code for Clock Divider (Frequency Divider).” All About
FPGA, 10 Jan. 2018, https://allaboutfpga.com/vhdl-code-for-clock-
divider/

This Diagram represents how the switches are connected

and how a note is stored on a flip-flop corresponding to

that switch.

This diagram portrays how the center button is connected to

The counter which is ultimately connected to the seven-segment

Display.

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://allaboutfpga.com/vhdl-code-for-clock-divider/
https://allaboutfpga.com/vhdl-code-for-clock-divider/

