ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

Notes — Unit 2

REVIEW OF NUMBER SYSTEMS

BINARY NUMBER SYSTEM
In the decimal system, a decimal digit can take values from 0 to 9. For the binary system, the counterpart of the decimal digit
is the binary digit, or bit (that can take the value of 0 or 1).

= Bit: Unit of Information that a digital computer uses to process and retrieve data.
= Binary number: This is represented by a string of bits using the positional number representation: b,,_,b,_5 - b1 by

BINARY TO DECIMAL CONVERSION
The binary number b,_,b,_, --- b;b, can be converted to the positive decimal number it represents by the following formula:
D=bp_X2" 1+ by, X224 -4+ by X 21 + by x 2°

= Maximum value for ‘n’ bits: The maximum binary number is given by an n-bit string of 1's: 111 ...111. Then, the
maximum decimal number is given by: D = 2""1 + 2772 4 ... 4 21 4 20 = pn-1

= With 'n’ bits, we can represent 2" positive integer numbers from 0 to 2™ — 1

HEXADECIMAL AND OCTAL NUMBER SYSTEMS
These number systems are very useful as they are short-hand notations for binary numbers.

HEXADECIMAL NUMBERS
A hexadecimal digit is also called a nibble. A hexadecimal digit can take a value from 0 to 15. To avoid confusion, the numbers
10 to 15 are represented by letters (A-F):

Hexadecimal digits
A

l0123456789ABCDEF
B AR EEEEEEEEE.
1 2 3 4 5 6 7 8 910 11 12 13 14 15

o

Y
Decimal digits

= A hexadecimal number with ‘n’ nibbles is given by: h,_,h,,_, --- h;hy. TO convert a hexadecimal number into the positive
decimal number it represents, we apply the following formula
D=hy, 1 X16" 1+ h,_, X16" 2+ -+ h; x 161 + hy x 16°

= Binary to hexadecimal conversion: We group bits in groups of 4 (starting from the rightmost bit). If the last group of
bits does not have bits, we append zeros to the left. Note that with 4 bits we can represent numbers from 0 to 15, i.e., 4
bits represent a hexadecimal digit. Therefore, to get the hexadecimal number, we independently convert each 4-bit group
to its hexadecimal value:

binary dec hex

Binary: 1011110, === 0101 1110 0000 0 0
decimal : 5 14 oooL 11

0010 2 2

) l 0011 3 3

. 0100 4 4

hexadecimal: 5 E 0101 5 5

0110 [[

0111 7 7

Then: 01011110, = Ox5E 1000 8 8
1001 9 9

1010 10 A

Verification: 1011 11 B
1100 12 C

01011110, = 1x2% + 1x2% + 1x23 4+ 1x22 + 1x2! = 94 1101 13 D
3) 0 1110 14 E

Ox5E = 5x16!t + Ex16Y = 94 1111 15 F

1 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

= Hexadecimal to binary conversion: We pick each hexadecimal digit and convert it to its 4-bit binary representation
(always use 4 bits). The resulting binary number is the concatenation of all resulting 4-bit groups:

FC Bl
¥ N ¥ N
——= ——
1111 1100 1011 0001
—
OxFA = 11111100, DO NOT discard these zeros
O0xB1 = 10110001, when concatening!

OCTAL NUMBERS
An octal digit can take values between 0 and 7.
= An octal number with ‘n’ octal digits is given by: o0,,_,0,_, - 0,00. TO convert an octal number into the positive decimal
number it represents, we apply the following formula:
D=0,_1%xX8"1+0, ,%x8"2+..+0, X8 +0,x8°

= The conversion between base-8 and base-2 resembles that of converting between base-16 and base-2. Here, we group
binary numbers in 3-bit groups:

BINARY TO OCTAL binary dec oct
Binary: 1011101, === 001 011 101 000 0 0
Y 2 — T T 001 1 1
l l l 010 2 2
octal: 011 3 3
1 3 5 100 4 4
~ 101 5 5
Then: 01011101, = 135, 110 . .
Verification: 111 7 7
01011101, = 1x26 + 1x24 + 1x23 + 1x22 + 1x20 = 93
135, = 1x82 + 3x8l + 5x8° = 93
OCTAL TO BINARY
74y 31,4
111 100 011 001
744 = 111100, -

31, = 011001, DO NOT discard these zeros
when concatening!
UNITS OF INFORMATION
Nibble Byte KB MB GB TB
4 bits 8 bits 210=1024 bytes 220=10242 bytes 230=10243 bytes 240=1024* bytes

= Note that the nibble (4 bits) is one hexadecimal digit. Also, one byte (8 bits) is represented by two hexadecimal digits.

= While KB, MB, GB, TB (and so on) should be powers of 10 in the International System, it is customary in digital jargon to
use powers of 2 to represent them.

= In microprocessor systems, memory size is usually a power of 2 due to the fact that the maximum memory size is
determined by the number of addresses the address bus can handle (which is a power of 2). As a result, it is very useful
to use the definition provided here for KB, MB, GB, TB (and so on).

= Digital computers usually represent numbers utilizing a number of bits that is a multiple of 8. The simple hexadecimal to
binary conversion may account for this fact as we can quickly convert a string of bits that is a multiple of 8 into a string of
hexadecimals digits.

= The size of the data bus in a processor represents the computing capacity of a processor, as the data bus size is the
number of bits the processor can operate in one operation (e.g.: 8-bit, 16-bit, 32-bit processor). This is also usually
expressed as a number of bits that is a multiple of 8.

2 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

APPLICATIONS OF BINARY AND HEXADECIMAL REPRESENTATIONS
INTERNET PROTOCOL ADDRESS (IP ADDRESS):

= Hexadecimal numbers represent a compact way of representing binary numbers. The IP address is defined as a 32-bit
number, but it is displayed as a concatenation of four decimal values separated by a dot (e.g., 129.26.53.76).

= The following figure shows how a 32-bit IP address expressed as a binary number is transformed into the standard IP
address notation.

IP address (binary): 10000001000110100011010101001100

1000 0001 0001 1010 0011 0101 0100 1100
Conversion to) W W V- L J L J

hexadecimal: 38 1 1 A 3 5 4 C Grab pairs of
L) L] L J L J hexadecimal numbers
76

! ! ! and convert each of
129 26 53 them to decimal.

IP address (hex): 0x811A354C
IP address notation: 129.26.53.76

= The 32-bit IP address expressed as binary number is very difficult to read. So, we first convert the 32-bit binary number
to a hexadecimal number.

= The IP address expressed as a hexadecimal (0x811A354C) is a compact representation of a 32-bit IP address. This should
suffice. However, it was decided to represent the IP address in a human-readable’ notation. In this notation, we grab
pairs of hexadecimal numbers and convert each of them individually to decimal numbers. Then we concatenate all the
values and separate them by a dot.

= Important: Note that the IP address notation (decimal numbers) is NOT the decimal value of the binary number. It is
rather a series of four decimal values, where each decimal value is obtained by independently converting each two
hexadecimal digits to its decimal value.

v' Given that each decimal number in the IP address can be represented by 2 hexadecimal digits (or 8 bits), what is the
range (min. value, max. value) of each decimal number in the IP address?
With 8 bits, we can represent 28 = 256 numbers from 0 to 255.

v An IP address represents a unique device connected to the Internet. Given that the IP address has 32 bits (or 8
hexadecimal digits), the how many numbers can be represented (i.e., how many devices can connect to the Internet)?
232 = 4294967296 devices.

v" The number of devices that can be connected to the Internet is huge, but considering the number of Internet-capable
devices that exists in the entire world, it is becoming clear that 32 bits is not going to be enough. That is why the
Internet Protocol is being currently extended to a new version (IPv6) that uses 128 bits for the addresses. With 128 bits,
how many Internet-capable devices can be connected to the Internet?

2128 ~ 3.4 x 1038 devices

REPRESENTING GRAYSCALE PIXELS
A grayscale pixel is commonly represented with 8 bits. So, a grayscale pixel value varies between 0 and 255, 0 being the
darkest (black) and 255 being the brightest (white). Any value in between represents a shade of gray.

0 255

MEMORY ADDRESSES

The address bus size in processors is usually determined by the Address
number of memory positions it can address. For example, if we
have a microprocessor with an address bus of 16 bits, we can
handle up to 2'¢ addresses. If the memory content is one byte
wide, then the processor can handle up to 2'bytes = 64KB. U 1

8 bits

0000 0000 0000 0000: 0x0000
0000 0000 0000 0001: 0x0001

Here, we use 16 bits per address, or 4 nibbles. The lowest address 1111 1111 1111 1111: OXFFFF
(in hex) is 0x0000 and highest address (in hex) is 0xFFFF.

3 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

Examples:

A microprocessor can only handle memory addresses from 0x0000 to 0x7FFF. What is the address bus size? If the
memory contents is one byte wide, what is the maximum size (in bytes) of the memory that we can connect?

Add 8 bits
. &>
We want to cover all the cases from 0x0000 to 0x7FFF: ress

000 0000 0000 0000: 0x0000
The range from 0x0000 to 0x7FFF is akin to all possible 000 0000 0000 0001: 0x0001
cases with 15 bits. Thus, the address bus size is 15 bits. N 1

We can handle 2%5bytes = 32KB of memory.

011 1111 1111 1111: OX7FFF

A microprocessor can only handle memory addresses from 0x0000 to 0x3FFF. What is the address bus size? If the
memory contents is one byte wide, what is the maximum size (in bytes) of the memory that we can connect?

d 8 bits

We want to cover all the cases from 0x0000 to 0x3FFF: Address «——>
0000 0000 0000 0000: 0x0000

The range from 0x0000 to 0x3FFF is akin to all possible cases 0000 0000 0000 0001: 0x0001

with 14 bits. Thus, the address bus size is 14 bits. - 1

We can handle 2'*bytes = 16KB of memory.

0011 1111 1111 1111: Ox3FFF

A microprocessor has a 24-bit address line. We connect a memory chip to the microprocessor. The memory chip
addresses are assigned the range 0x800000 to 0xBFFFFF. What is the minimum number of bits required to represent
addresses in that individual memory chip? If the memory contents is one byte wide, what is the memory size (in bytes)?

8 bits
By looking at the binary numbers from Address «<————>
0x80000 to OxBFFFFF, we notice that the 1000 0000 0000 0000 0000 0000: 0x800000
addresses in that range require 24 bits. But |1000 0000 0000 0000 0000 0001: 0x800001
all those addresses share the same first two ..
MSBs: 10. Thus, if we were to use only that l

memory chip, we do not need those 2 bits, <
and we only need 22 bits. 1011 1111 1111 1111 1111 1111: OxBFFFFF

We can handle 222bytes = 4MB of memory.

A memory has a size of 512KB, where each memory content is 8-bits wide. How many bits do we need to address the
contents of this memory?

Recall that: 512KB = 2%bytes. So we need 19 bits to address the contents of this memory.
In general, for a memory with N address positions, the number of bits to address those position is given by: [log, N]

A 20-bit address line in a microprocessor with an 8-bit data bus handles 1 MB (22° bytes) of data. We want to connect
four 256 KB memory chips to the microprocessor.

Provide the address ranges that each memory device Address 8 bits
will occupy. 0000 0000 0000 0000 0000: 0x00000 |1

. . L 0000 0000 0000 0000 0001: 0x00001
For a 20-bit address: we have 5 hexadecimal digits 256KB
that go from 0x00000 to OxFFFFF. 0011 1111 1111 1111 1111: Ox3FFFF

We need to divide the 22° memory positions into 4 ~ 0100 0000 0000 0000 0000: 0x40000 2
0100 0000 0000 0000 0001: Ox40001

groups, each with 2'® memory positions. Each group 256KB
will correspond to the memory positions of one of the
256KB memory chips. Note how at each group, the 2
MSBs are the same. 1000 0000 0000 0000 0000: 0x80000 3

1000 0000 0000 0000 0001: 0x80001

0111 1111 1111 1111 1111: Ox7FFFF

. 256KB
* Each memory chip can handle 256KB of memory. 56
256KB = 2'®pytes. Thus, each memory chip only ~ 1011 1111 1111 1111 1111: OXBFFFF
requires 18 bits. 1100 0000 0000 0000 0000: 0xC0O000 |4
1100 0000 0000 0000 0001: 0xC0001 256KB

1111 1111 1111 1111 1111: OXFFFFF

4 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design

Fall 2014

BINARY CODES
We know that with *n’ bits we can represent 2™ numbers from 0 to 2" — 1. This is a commonly used range. However, with
'n’ bits, we can represent 2™ numbers in any range. Moreover, we can represent 2™ symbols.
If we have N symbols to represent, the number of bits required is given by: [log, N|. For example:
What is the minimum number of bits to represent?
= Minimum number of bits to represent 70,000 colors: — Number of bits: [log, 70000] = 17 bits
= Minimum number of bits to represents numbers between 15,000 and 19,0967

— There are 19,096-15,000+1=4097 numbers — Number of bits: [log, 4097] = 13 bits

7-bit US-ASCII character-encoding scheme. Each character is represented by 7 bits, so we have 27 = 128 characters.
Each character (or symbol) is said to have a binary code:

Hex Dec Char Hex Dec Char |Hex Dec Char |[Hex Dec Char
0x00 0 NULL null 0x20 32 Space|0x40 64 @ |J0x60 96 ~
0x01 1 SoH Start of heading 0x21 33 ! 0x41 65 A |0x61 97 a
0x02 2 STX Start of text 0x22 34 2 0x42 66 B |0x62 98 b
0x03 3 ETX End of text 0x23 35 # 0x43 67 C |0x63 99 c
0x04 4 EOT End of transmission 0x24 36 $ 0x44 68 D |0x64 100 d
0x05 5 ENQ Enquiry 0x25 37 % 0x45 69 E |0x65 101 e
0x06 6 ACK Acknowledge 0x26 38 & 0x46 70 F |0x66 102 £
0x07 7 BELL Bell 0x27 39 ' 0x47 71 G |0x67 103 g
0x08 8 BS Backspace 0x28 40 (0x48 72 H |0x68 104 h
0x09 9 TAB Horizontal tab 0x29 41) 0x49 73 I |0x69 105 i
0x0A 10 LF New line 0x2A 42 * 0x4A 74 J |0x6A 106 j
0x0B 11 VT Vertical tab 0x2B 43 + 0x4B 75 K |0x6B 107 k
0x0C 12 FF Form Feed 0x2C 44 0x4C 76 L |O0x6C 108 1
0x0D 13 CR Carriage return 0x2D 45 0x4D 77 M |0x6D 109 m
0x0E 14 SO Shift out 0x2E 46 3 0x4E 78 N |0x6E 110 n
0x0F 15 sI Shift in 0x2F 47 / 0x4F 79 O |0x6F 111 o
0x10 16 DLE Data link escape 0x30 48 0 0x50 80 P |0x70 112 p
0x11 17 DC1 Device control 1 0x31 49 1 0x51 81 Q |0x71 113 ¢
0x12 18 DC2 Device control 2 0x32 50 2 0x52 82 R |0x72 114 «r
0x13 19 DC3 Device control 3 0x33 51 3 0x53 83 s |0x73 115 s
0x14 20 DC4 Device control 4 0x34 52 4 0x54 84 T |0x74 116 t
0x15 21 NAK Negative ack 0x35 53 5 0x55 85 U |0x75 117 u
0x1l6 22 SYN Synchronous idle 0x36 54 6 0x56 86 VvV [|0x76 118 v
0x17 23 ETB End transmission block | 0x37 55 7 0x57 87 W |0x77 119 w
0x18 24 CAN Cancel 0x38 56 8 0x58 88 X |0x78 120 x
0x19 25 EM End of medium 0x39 57 9 0x59 89 Y |0x79 121 vy
0x1A 26 SUB Substitute 0x3A 58 - 0x5A 90 z |0x7A 122 z
0x1B 27 FSC Escape 0x3B 59 7 0x5B 91 [|0x7B 123 {
0x1C 28 FS File separator 0x3C 60 < 0x5C 92 \ [0x7C 124 |
0x1D 29 GS Group separator 0x3D 61 = 0x5D 93] |0x7D 125 }
0x1E 30 RS Record separator 0x3E 62 > 0x5E 94 ~ |Ox7E 126 -~
0x1F 31 US Unit separator 0x3F 63 2 0x5F 95 _ |O0x7F 127 DEL
Unicode: it can represent more than 110,000 characters and attempts to cover all world’s scripts. A common character

encoding is UTF-16, which uses 2 pair of 16-bit units: For most purposes, a 16 bit unit suffices (2'¢ = 65536 characters):

39 (Greek theta symbol) = 03D1

BCD Code:
In this coding scheme, decimal numbers are represented in binary form by independently encoding each decimal digit in
binary form (4 bits). Note that only values from 0 are 9 are represented here.
This is a very useful code for input devices (e.g.: keypad). But it is not a coding scheme suitable for arithmetic operations.
Also, recall that 6 binary values (from 1010 to 1111) wasted.
Decimal number 47: In BCD format, this would be: 0100 0111,
Note that the BCD is NOT the binary number, since 47 is represented by 101111 in binary form (requiring 6 bits).

€2 (Greek capital letter Omega): 0329

M (Cyrillic capital letter zhe): 0416

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-470/570: Microprocessor-Based System Design

Fall 2014

REPRESENTATION OF SIGNED NUMBERS

For an n-bit number b,_;b,_,:-biby, there exist three common signed representations: signed-magnitude, 1's
complement, and 2's complement. In these 3 representations, the MSB always tells us whether the number is positive
(MSB=0) or negative (MSB=1).

SIGN-AND-MAGNITUDE (SM):

Here, the sign and the magnitude (value) are represented separately. The MSB represents the sign and the remaining n-1
bits the magnitude.
Examples (n=4):

0110 = +6 1110 = -6

1'S COMPLEMENT (1C):

In this representation, if the MSB=0, the remaining n-1 bits represent the magnitude. Negative numbers (MSB=1) are

obtained by inverting the sign of the positive numbers. To invert the sign of a number in 1's complement representation,

we apply the 1’s complement operation to the number, which consists on inverting all the bits.

Examples (n=4):

v +6=0110 — -6=1001, +5=0101 — -5=1010, +7=0111 — -7=1000.

v If -6=1001, we get +6 by applying the 1's complement operationto 1001 — +6 = 0110

v" What is the decimal value of 1100? We first apply the 1's complement operation to 1100, which results in 0011
(+3). Thus 1100=-3.

v" What is the 1's complement representation of -4? We know that +4=0100. To get -4, we apply the 1's complement
operation to 0100, which resultsin 1011. Thus 1011=-4.

2'S COMPLEMENT (2C):

In this representation, if the MSB=0, the remaining n-1 bits represent the magnitude. Negative numbers (MSB=1) are

obtained by inverting the sign of the positive numbers. To invert the sign of a number in 2's complement representation,

we apply the 2’s complement operation to the number, which consists on inverting all the bits and add 1.

Examples (n=4):

v +6=0110 — -6=1010, +5=0101 — -5=1011, +7=0111 — -7=1001.

v If -6=1010, we get +6 by applying the 2's complement operationto 1010 — +6 = 0110

v What is the decimal value of 1101? We first apply the 2's complement operation to 1101, which results in 0011
(+3).Thus 1101=-3.

v What is the 2's complement representation of -4? We know that +4=0100. To get -4, we apply the 2's complement
operation to 0100, which results in 1100. Thus 1100=-4.

The following table summarizes the signed representations for a 4-bit nhumber:

n=4: SIGNED REPRESENTATION
bsbobibo Sign-and-magnitude 1's complement 2's complement
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 0 -1
Range for n bits: | [-(* 1 —1),2"t—1] | [-*1—1),2"1—1] | [-2n 1 2n1—1]

= 1C and 2C are representations of signed numbers. 1C and 2C represent both negative and positive numbers. Do not
confuse the 1C and 2C representations with the 1C and 2C operations.

» Note that the sign-and-magnitude and the 1’s complement representations have a redundant representation for zero. This
is not the case in 2's complement, which can represent an extra number.

= In 2C, the number -8 can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which
results in 1000. But 1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000.

6 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

BINARY ARITHMETIC

UNSIGNED NUMBERS

ADDITION:

= In the example, we add two 8-bit numbers using
binary representation and hexadecimal representation
(this is a short-hand notation). Note that every
summation of two digits (binary or hexadecimal)
generates a carry when the summation requires more
than one digit. Also, note that cq is the carry in of the
summation. This is usually zero. OxF1

0
1

o o C6:1

= C5=1
1
1

Il cg=0
c,=0

0x3F
0xB2

I—‘OC7
e o
OIAC3
OHC2=1
= c,=0
OHCO=0
+
W wC
N | ocy=0

11110001 F1

= The last carry (cs when n=8) is the carry out of the
summation. If it is zero, it means that the summation
can be represented with 8 bits. If it is one, it means
that the summation requires more than 8 bits (in fact Ox3F =
9 bits); this is called an overflow. In the example, we =~ 0xC2 =
add two numbers and overflow occurs: an extra bit (in
red) is required to correctly represent the summation. 1 0000O0O0O0CT1 101

cg=1
) c7=1
1

1

1

1

1

1

== oc=0

[@X] =
c,=0
%)

+
Qweg

= O ¢
SR
o»—*c4=1
OD—‘C?’
©rog,
N =0

= Multi-precision addition: Microprocessors usually have
fixed arithmetic units such as an 8-bit adder that has a
carry ininput and a carry out output. In the example, we
add two 16-bit numbers, and we do it in two operations:
The first one adds the two least significant bytes. If there
is a carry out, it is stored in a special register. The second
operation adds the two most significant bytes where the
carry in corresponds to the carry out of the previous E701 E 7 01
operation. We can keep doing this in order to add larger
numbers, but we have to make sure the microprocessor can store that result somewhere.

1<

0
0
1
0
0
1
0

D>»J>c3
l—‘U‘IC2=1
Qwg
N
+

G
> =0
= U,
+
QO we
NG,
+

SUBTRACTION:

= In the example, we subtract two 8-bit numbers using C OO0 O Ao O
the binary and hexadecimal (this is a short-hand [T TG T T | I | WO [| R T 1
notation) representations. A subtraction of two digits
(binary or hexadecimal) generates a borrow when the ~ Ox3A = 0
difference is negative. So, we borrow 1 from the next 0x2F = 0
digit so that the difference is positive. Recall that a
borrow in a subtraction of two digitsisanextralthat (oxor = 0 0 0 0 1 0 1 1 0B
we need to subtract. Also, note that by is the borrow
/n of the summation. This is usually zero.

= The last borrow (bg when n=8) is the borrow out of A H 00O o O o
|
00

the subtraction. If it is zero, it means that the o g Ty I

o o el o o
O_
1

difference is positive and can be represented with 8

bits. If it is one, it means that the difference is 0x3A =
negative and we need to borrow 1 from the next 0x75 =
digit. In the example, we subtract two 8-bit numbers,
the result we have borrows 1 from the next digit. OxC5 =11000101 C 5

o 0o Q9 o)
0011101
0111010

= Multi-precision subtraction: A fixed arithmetic unit e ~
such as an 8-bit subtractor usually has a borrow in input OO - O o -
and a borrow out output. In the example, we subtract e 1y ot
two 16-bit numbers in two steps: First, we subtract the < <
two least significant bytes. If there is a borrow out, it is B B
stored in a special register. Next, we subtract the two 3 3
most significant bytes where the borrow in corresponds
to the borrow out of the previous operation. We can keep 7 ACS 7 A C 5
doing this to subtract larger numbers, but we have to
make sure the microprocessor can store that result somewhere. If the final result has a borrow, the result is incorrect.

)=

o 9o o
2 3 A -
775 —_—

7 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-470/570: Microprocessor-Based System Design

Fall 2014

SIGNED NUMBERS (2S COMPLEMENT)

= The advantage of the 2's complement representation is that the summation can be carried out using the same circuitry as
that of the unsigned summation. Here the operands can either be positive or negative.
= We show addition examples of two 8-bit signed numbers. The carry out cs is not enough to determine overflow. Here, if

cg#Cy there is overflow. If cs=c7, no overflow and we can

ignore cg. Thus, the overflow bit is equal to cg XOR c;.

= Note that overflow happens when the summation falls outside the 2's complement range for 8 bits: [—-27,27 — 1].

o I+ 4 O O O !

TSR TR TR IR TR TR [T !

O 0O 0O 0O 0O 0O O VU 0O 1

+92 =01011100 + i
+78 =01 001110 !
+170 = 010101010 i
overflow = cg®c,=1 -> overflow! |
+170 ¢ [-27, 27-1]1 -> overflow! |
— -+ +H 0 O0O0O0Oo i

IO TR TR THRR I SRR TR [T :

O 0O 0O 0O 0O 0O O OV 0O |

+92 =01011100 + |

-78 =1 0110010 5
+14 =X 00001110 i
overflow = cg®c,=0 -> no overflow |
+14 € [-27, 27-1] -> no overflow |

—- O +HO0 000 oo

o T WM W T T T

O 0O 0O 0O 0O 0O O VU oo
-92=10100100+

-78=10110010

-170 =1 01010110

overflow = cg®c,=1 -> overflow!

-170 ¢ [-27, 27-1]1 -> overflow!

OCO0OO0O0O OO

mononomonouomomon

Uoo U’\ ULD Um Uq Um UN U‘_‘ Uo
-92=10100100+

+78 =01 001110

-14 =X 11110010
overflow = ¢g®c,=0 -> no overflow
-14 € [-27, 27-1] -> no overflow

= In general, for an n-bit number, overflow occurs when the summation falls outside the range [—2""1,2"1 — 1]. The

overflow bit can quickly be computed as ¢, XOR cp-1.

= Subtraction: Note that A — B = A + 2C(B). To subtract

two numbers represented in 2's complement arithmetic, we first

apply the 2's complement operation to B, and then add the numbers. So, in 2’s complement arithmetic, subtraction is

actually an addition of two numbers.

BCD ADDITION
= BCD addition is the typical decimal addition. If we want a circuit that performed BCD addition, this is what we would get:
“«
28 (BCD) = 0010 1000+ L(BCD) = 0001~ "
47 (BCD) = 0100 0111 2(BCD) = 1000 +) 8 (BCD) = 1000 +
= 4 (BCD) = 0111 7(BCD) = 0111
75(BCD) = 01110101 P ——— S
7(BCD) = 0111 15(BCD) = 0001 0101
= To avoid designing a custom circuit to do this, we want to use the same circuitry for 0x28 = 0010 11000
binary addition. If we input the BCD codes of 28 and 47 in a binary adder, they 0x47 = 0100 0111
would be interpreted as 0x28+0x47=0x6F which is not the BCD number 75 = 0111
0101 that we want. Note that for the lower order nibble, the sum is
0x8+0x7=0xF=1111. And what we want is 15 (BCD) = 0001 0101, where 1 is the ~ 0x6F = 0110 1111
carry to the next higher nibble. There is a difference of 0x6 between 0x15 and OxF. 0x06 = 0110
So, to get the proper BCD result we need to add 0x6 to Ox6F = 0x75.
= Another example: 194+57=76. 0x19+0x47=0x70. The results looks like a BCD code 0x75 = 0111 0101
but it is incorrect, we need to add 0x06: 0x70+0x06=0x76.
= In general, if the summation of two nibbles is greater than 0x9, we add 0x6 to the result.
= For example: 197995 + 353375 = (N
OX4EADOA. To correct it, we do R R FF T T SF TR T« T TR
Ox4EADOA + 066666 = 0x551370. &L &S & &S & S & S & SS&
We <can also do this using 197 995 + 1 9 + | 7 9 4+ 9 5 +
multiprecision addition, where 353375 = 3 5 3 3 7 5
only bytes can be added at a time. U o
The carries can come from either the 4 FEADGORA + 4 F + S'ap o+ 0 A +
normal binary addition or from the
operation that adds 6 to a particular voeeoen o ii ° 0
nibble. This is depicted in the figure:
551370 55 13 70
8 Instructor: Daniel Llamocca

