
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Notes – Unit 2

REVIEW OF NUMBER SYSTEMS

BBIINNAARRYY NNUUMMBBEERR SSYYSSTTEEMM
In the decimal system, a decimal digit can take values from 0 to 9. For the binary system, the counterpart of the decimal digit
is the binary digit, or bit (that can take the value of 0 or 1).

 Bit: Unit of Information that a digital computer uses to process and retrieve data.
 Binary number: This is represented by a string of bits using the positional number representation: 𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0

BINARY TO DECIMAL CONVERSION
The binary number 𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0 can be converted to the positive decimal number it represents by the following formula:

𝐷 = 𝑏𝑛−1 × 2𝑛−1 + 𝑏𝑛−2 × 2𝑛−2 + ⋯ + 𝑏1 × 21 + 𝑏0 × 20

 Maximum value for ‘n’ bits: The maximum binary number is given by an n-bit string of 1’s: 111 … 111. Then, the

maximum decimal number is given by: 𝐷 = 2𝑛−1 + 2𝑛−2 + ⋯ + 21 + 20 = 2𝑛−1

 With ‘n’ bits, we can represent 2𝑛 positive integer numbers from 0 to 2𝑛 − 1

HHEEXXAADDEECCIIMMAALL AANNDD OOCCTTAALL NNUUMMBBEERR SSYYSSTTEEMMSS
These number systems are very useful as they are short-hand notations for binary numbers.

HEXADECIMAL NUMBERS
A hexadecimal digit is also called a nibble. A hexadecimal digit can take a value from 0 to 15. To avoid confusion, the numbers
10 to 15 are represented by letters (A-F):

 A hexadecimal number with ‘n’ nibbles is given by: ℎ𝑛−1ℎ𝑛−2 ⋯ ℎ1ℎ0. To convert a hexadecimal number into the positive

decimal number it represents, we apply the following formula
𝐷 = ℎ𝑛−1 × 16𝑛−1 + ℎ𝑛−2 × 16𝑛−2 + ⋯ + ℎ1 × 161 + ℎ0 × 160

 Binary to hexadecimal conversion: We group bits in groups of 4 (starting from the rightmost bit). If the last group of

bits does not have bits, we append zeros to the left. Note that with 4 bits we can represent numbers from 0 to 15, i.e., 4
bits represent a hexadecimal digit. Therefore, to get the hexadecimal number, we independently convert each 4-bit group
to its hexadecimal value:

Hexadecimal digits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal digits

Binary: 10111102 0101 1110
0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

binary dec hex

5 14decimal:

5 Ehexadecimal:

Then: 010111102 = 0x5E

010111102 = 1 26 + 1 24 + 1 23 + 1 22 + 1 21 = 94

0x5E = 5 161 + E 160 = 94

Verification:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

 Hexadecimal to binary conversion: We pick each hexadecimal digit and convert it to its 4-bit binary representation

(always use 4 bits). The resulting binary number is the concatenation of all resulting 4-bit groups:

OCTAL NUMBERS
An octal digit can take values between 0 and 7.
 An octal number with ‘n’ octal digits is given by: 𝑜𝑛−1𝑜𝑛−2 ⋯ 𝑜1𝑜0. To convert an octal number into the positive decimal

number it represents, we apply the following formula:
𝐷 = 𝑜𝑛−1 × 8𝑛−1 + 𝑜𝑛−2 × 8𝑛−2 + ⋯ + 𝑜1 × 81 + 𝑜0 × 80

 The conversion between base-8 and base-2 resembles that of converting between base-16 and base-2. Here, we group

binary numbers in 3-bit groups:

UNITS OF INFORMATION

Nibble Byte KB MB GB TB

4 bits 8 bits 210=1024 bytes 220=10242 bytes 230=10243 bytes 240=10244 bytes

 Note that the nibble (4 bits) is one hexadecimal digit. Also, one byte (8 bits) is represented by two hexadecimal digits.
 While KB, MB, GB, TB (and so on) should be powers of 10 in the International System, it is customary in digital jargon to

use powers of 2 to represent them.
 In microprocessor systems, memory size is usually a power of 2 due to the fact that the maximum memory size is

determined by the number of addresses the address bus can handle (which is a power of 2). As a result, it is very useful
to use the definition provided here for KB, MB, GB, TB (and so on).

 Digital computers usually represent numbers utilizing a number of bits that is a multiple of 8. The simple hexadecimal to
binary conversion may account for this fact as we can quickly convert a string of bits that is a multiple of 8 into a string of
hexadecimals digits.

 The size of the data bus in a processor represents the computing capacity of a processor, as the data bus size is the
number of bits the processor can operate in one operation (e.g.: 8-bit, 16-bit, 32-bit processor). This is also usually
expressed as a number of bits that is a multiple of 8.

Binary: 10111012 001 011 101 000 0 0

001 1 1

010 2 2

011 3 3

100 4 4

101 5 5

110 6 6

111 7 7

binary dec oct

1 3
octal:

Then: 010111012 = 1358

010111012 = 1 26 + 1 24 + 1 23 + 1 22 + 1 20 = 93

1358 = 1 82 + 3 81 + 5 80 = 93

Verification:

748

111 100

318

011 001

DO NOT discard these zeros
when concatening!

748 = 1111002
318 = 0110012

5

BINARY TO OCTAL

OCTAL TO BINARY

FC

1111 1100

B1

1011 0001

DO NOT discard these zeros
when concatening!

0xFA = 111111002
0xB1 = 101100012

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

AAPPPPLLIICCAATTIIOONNSS OOFF BBIINNAARRYY AANNDD HHEEXXAADDEECCIIMMAALL RREEPPRREESSEENNTTAATTIIOONNSS

INTERNET PROTOCOL ADDRESS (IP ADDRESS):

 Hexadecimal numbers represent a compact way of representing binary numbers. The IP address is defined as a 32-bit

number, but it is displayed as a concatenation of four decimal values separated by a dot (e.g., 129.26.53.76).
 The following figure shows how a 32-bit IP address expressed as a binary number is transformed into the standard IP

address notation.

 The 32-bit IP address expressed as binary number is very difficult to read. So, we first convert the 32-bit binary number

to a hexadecimal number.
 The IP address expressed as a hexadecimal (0x811A354C) is a compact representation of a 32-bit IP address. This should

suffice. However, it was decided to represent the IP address in a 'human-readable' notation. In this notation, we grab
pairs of hexadecimal numbers and convert each of them individually to decimal numbers. Then we concatenate all the
values and separate them by a dot.

 Important: Note that the IP address notation (decimal numbers) is NOT the decimal value of the binary number. It is
rather a series of four decimal values, where each decimal value is obtained by independently converting each two
hexadecimal digits to its decimal value.

 Given that each decimal number in the IP address can be represented by 2 hexadecimal digits (or 8 bits), what is the

range (min. value, max. value) of each decimal number in the IP address?
With 8 bits, we can represent 28 = 256 numbers from 0 to 255.

 An IP address represents a unique device connected to the Internet. Given that the IP address has 32 bits (or 8

hexadecimal digits), the how many numbers can be represented (i.e., how many devices can connect to the Internet)?
232 = 4294967296 devices.

 The number of devices that can be connected to the Internet is huge, but considering the number of Internet-capable

devices that exists in the entire world, it is becoming clear that 32 bits is not going to be enough. That is why the
Internet Protocol is being currently extended to a new version (IPv6) that uses 128 bits for the addresses. With 128 bits,
how many Internet-capable devices can be connected to the Internet?

2128 ≈ 3.4 × 1038 devices

REPRESENTING GRAYSCALE PIXELS
A grayscale pixel is commonly represented with 8 bits. So, a grayscale pixel value varies between 0 and 255, 0 being the
darkest (black) and 255 being the brightest (white). Any value in between represents a shade of gray.

MEMORY ADDRESSES
The address bus size in processors is usually determined by the
number of memory positions it can address. For example, if we
have a microprocessor with an address bus of 16 bits, we can
handle up to 216 addresses. If the memory content is one byte

wide, then the processor can handle up to 216𝑏𝑦𝑡𝑒𝑠 = 64𝐾𝐵.

Here, we use 16 bits per address, or 4 nibbles. The lowest address

(in hex) is 0x0000 and highest address (in hex) is 0xFFFF.

0 255

1000 0001 0001 1010 0011 0101 0100 1100

8 1 1 A 3 5 4 C

IP address notation: 129.26.53.76

129 26 53 76

IP address (binary): 10000001000110100011010101001100

Conversion to

hexadecimal:

IP address (hex): 0x811A354C

Grab pairs of

hexadecimal numbers

and convert each of

them to decimal.

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

1111 1111 1111 1111: 0xFFFF

Address

...

8 bits

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

Examples:

 A microprocessor can only handle memory addresses from 0x0000 to 0x7FFF. What is the address bus size? If the

memory contents is one byte wide, what is the maximum size (in bytes) of the memory that we can connect?

We want to cover all the cases from 0x0000 to 0x7FFF:

The range from 0x0000 to 0x7FFF is akin to all possible

cases with 15 bits. Thus, the address bus size is 15 bits.

We can handle 215𝑏𝑦𝑡𝑒𝑠 = 32𝐾𝐵 of memory.

 A microprocessor can only handle memory addresses from 0x0000 to 0x3FFF. What is the address bus size? If the

memory contents is one byte wide, what is the maximum size (in bytes) of the memory that we can connect?

We want to cover all the cases from 0x0000 to 0x3FFF:

The range from 0x0000 to 0x3FFF is akin to all possible cases
with 14 bits. Thus, the address bus size is 14 bits.

We can handle 214𝑏𝑦𝑡𝑒𝑠 = 16𝐾𝐵 of memory.

 A microprocessor has a 24-bit address line. We connect a memory chip to the microprocessor. The memory chip

addresses are assigned the range 0x800000 to 0xBFFFFF. What is the minimum number of bits required to represent

addresses in that individual memory chip? If the memory contents is one byte wide, what is the memory size (in bytes)?

By looking at the binary numbers from

0x80000 to 0xBFFFFF, we notice that the

addresses in that range require 24 bits. But
all those addresses share the same first two
MSBs: 10. Thus, if we were to use only that

memory chip, we do not need those 2 bits,
and we only need 22 bits.

We can handle 222𝑏𝑦𝑡𝑒𝑠 = 4𝑀𝐵 of memory.

 A memory has a size of 512KB, where each memory content is 8-bits wide. How many bits do we need to address the

contents of this memory?

Recall that: 512𝐾𝐵 = 219𝑏𝑦𝑡𝑒𝑠. So we need 19 bits to address the contents of this memory.

In general, for a memory with 𝑁 address positions, the number of bits to address those position is given by: ⌈log2 𝑁⌉

 A 20-bit address line in a microprocessor with an 8-bit data bus handles 1 MB (220 𝑏𝑦𝑡𝑒𝑠) of data. We want to connect

four 256 KB memory chips to the microprocessor.
Provide the address ranges that each memory device
will occupy.

For a 20-bit address: we have 5 hexadecimal digits

that go from 0x00000 to 0xFFFFF.

We need to divide the 220 memory positions into 4
groups, each with 218 memory positions. Each group

will correspond to the memory positions of one of the
256KB memory chips. Note how at each group, the 2
MSBs are the same.

* Each memory chip can handle 256KB of memory.
256𝐾𝐵 = 218𝑏𝑦𝑡𝑒𝑠. Thus, each memory chip only

requires 18 bits.

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

0011 1111 1111 1111: 0x3FFF

Address

...

8 bits

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

0011 1111 1111 1111: 0x7FFF

Address

...
8 bits

1000 0000 0000 0000 0000 0000: 0x800000

1000 0000 0000 0000 0000 0001: 0x800001

...

...

...

1011 1111 1111 1111 1111 1111: 0xBFFFFF

Address

...

8 bits

256KB

2

Address 8 bits

0000 0000 0000 0000 0000: 0x00000

0000 0000 0000 0000 0001: 0x00001

... ...

0011 1111 1111 1111 1111: 0x3FFFF

0100 0000 0000 0000 0000: 0x40000

0100 0000 0000 0000 0001: 0x40001

... ...

0111 1111 1111 1111 1111: 0x7FFFF

1000 0000 0000 0000 0000: 0x80000

1000 0000 0000 0000 0001: 0x80001

... ...

1011 1111 1111 1111 1111: 0xBFFFF

1100 0000 0000 0000 0000: 0xC0000

1100 0000 0000 0000 0001: 0xC0001

... ...

1111 1111 1111 1111 1111: 0xFFFFF

256KB

1

256KB

3

256KB

4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

BINARY CODES

 We know that with ‘n’ bits we can represent 2𝑛 numbers from 0 to 2𝑛 − 1. This is a commonly used range. However, with

‘n’ bits, we can represent 2𝑛 numbers in any range. Moreover, we can represent 2𝑛 symbols.

 If we have N symbols to represent, the number of bits required is given by: ⌈log2 𝑁⌉. For example:

What is the minimum number of bits to represent?
 Minimum number of bits to represent 70,000 colors:  Number of bits: ⌈log2 70000⌉ = 17 bits

 Minimum number of bits to represents numbers between 15,000 and 19,096?

 There are 19,096-15,000+1=4097 numbers  Number of bits: ⌈log2 4097⌉ = 13 bits

7-bit US-ASCII character-encoding scheme. Each character is represented by 7 bits, so we have 27 = 128 characters.

Each character (or symbol) is said to have a binary code:

Unicode: it can represent more than 110,000 characters and attempts to cover all world’s scripts. A common character
encoding is UTF-16, which uses 2 pair of 16-bit units: For most purposes, a 16 bit unit suffices (216 = 65536 characters):

 (Greek theta symbol) = 03D1  (Greek capital letter Omega): 03A9 Ж (Cyrillic capital letter zhe): 0416

BCD Code:
In this coding scheme, decimal numbers are represented in binary form by independently encoding each decimal digit in
binary form (4 bits). Note that only values from 0 are 9 are represented here.
 This is a very useful code for input devices (e.g.: keypad). But it is not a coding scheme suitable for arithmetic operations.

Also, recall that 6 binary values (from 1010 to 1111) wasted.
 Decimal number 47: In BCD format, this would be: 0100 01112

Note that the BCD is NOT the binary number, since 47 is represented by 101111 in binary form (requiring 6 bits).

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

6 Instructor: Daniel Llamocca

REPRESENTATION OF SIGNED NUMBERS

 For an n-bit number 𝑏𝑛−1𝑏𝑛−2 ⋯ 𝑏1𝑏0, there exist three common signed representations: signed-magnitude, 1’s

complement, and 2’s complement. In these 3 representations, the MSB always tells us whether the number is positive
(MSB=0) or negative (MSB=1).

SIGN-AND-MAGNITUDE (SM):
 Here, the sign and the magnitude (value) are represented separately. The MSB represents the sign and the remaining n-1

bits the magnitude.
 Examples (n=4): 0110 = +6 1110 = -6

1'S COMPLEMENT (1C):
 In this representation, if the MSB=0, the remaining n-1 bits represent the magnitude. Negative numbers (MSB=1) are

obtained by inverting the sign of the positive numbers. To invert the sign of a number in 1’s complement representation,
we apply the 1’s complement operation to the number, which consists on inverting all the bits.

 Examples (n=4):
 +6=0110  -6=1001, +5=0101  -5=1010, +7=0111  -7=1000.

 If -6=1001, we get +6 by applying the 1’s complement operation to 1001  +6 = 0110

 What is the decimal value of 1100? We first apply the 1’s complement operation to 1100, which results in 0011

(+3). Thus 1100=-3.

 What is the 1’s complement representation of -4? We know that +4=0100. To get -4, we apply the 1’s complement

operation to 0100, which results in 1011. Thus 1011=-4.

2'S COMPLEMENT (2C):
 In this representation, if the MSB=0, the remaining n-1 bits represent the magnitude. Negative numbers (MSB=1) are

obtained by inverting the sign of the positive numbers. To invert the sign of a number in 2’s complement representation,
we apply the 2’s complement operation to the number, which consists on inverting all the bits and add 1.

 Examples (n=4):

 +6=0110  -6=1010, +5=0101  -5=1011, +7=0111  -7=1001.

 If -6=1010, we get +6 by applying the 2’s complement operation to 1010  +6 = 0110

 What is the decimal value of 1101? We first apply the 2’s complement operation to 1101, which results in 0011

(+3). Thus 1101=-3.

 What is the 2’s complement representation of -4? We know that +4=0100. To get -4, we apply the 2’s complement

operation to 0100, which results in 1100. Thus 1100=-4.

The following table summarizes the signed representations for a 4-bit number:

n=4:

b3b2b1b0

SIGNED REPRESENTATION

Sign-and-magnitude 1’s complement 2’s complement
0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

 0

 1

 2

 3

 4

 5

 6

 7

 0

-1

-2

-3

-4

-5

-6

-7

 0

 1

 2

 3

 4

 5

 6

 7

-7

-6

-5

-4

-3

-2

-1

 0

 0

 1

 2

 3

 4

 5

 6

 7

-8

-7

-6

-5

-4

-3

-2

-1

Range for n bits: [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−2𝑛−1, 2𝑛−1 − 1]

 1C and 2C are representations of signed numbers. 1C and 2C represent both negative and positive numbers. Do not
confuse the 1C and 2C representations with the 1C and 2C operations.

 Note that the sign-and-magnitude and the 1’s complement representations have a redundant representation for zero. This
is not the case in 2’s complement, which can represent an extra number.

 In 2C, the number -8 can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which

results in 1000. But 1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

7 Instructor: Daniel Llamocca

BINARY ARITHMETIC

UUNNSSIIGGNNEEDD NNUUMMBBEERRSS

ADDITION:
 In the example, we add two 8-bit numbers using

binary representation and hexadecimal representation
(this is a short-hand notation). Note that every
summation of two digits (binary or hexadecimal)
generates a carry when the summation requires more
than one digit. Also, note that c0 is the carry in of the
summation. This is usually zero.

 The last carry (c8 when n=8) is the carry out of the

summation. If it is zero, it means that the summation
can be represented with 8 bits. If it is one, it means
that the summation requires more than 8 bits (in fact
9 bits); this is called an overflow. In the example, we
add two numbers and overflow occurs: an extra bit (in
red) is required to correctly represent the summation.

 Multi-precision addition: Microprocessors usually have

fixed arithmetic units such as an 8-bit adder that has a
carry in input and a carry out output. In the example, we
add two 16-bit numbers, and we do it in two operations:
The first one adds the two least significant bytes. If there
is a carry out, it is stored in a special register. The second
operation adds the two most significant bytes where the

carry in corresponds to the carry out of the previous
operation. We can keep doing this in order to add larger
numbers, but we have to make sure the microprocessor can store that result somewhere.

SUBTRACTION:
 In the example, we subtract two 8-bit numbers using

the binary and hexadecimal (this is a short-hand
notation) representations. A subtraction of two digits
(binary or hexadecimal) generates a borrow when the
difference is negative. So, we borrow 1 from the next
digit so that the difference is positive. Recall that a
borrow in a subtraction of two digits is an extra 1 that
we need to subtract. Also, note that b0 is the borrow
in of the summation. This is usually zero.

 The last borrow (b8 when n=8) is the borrow out of

the subtraction. If it is zero, it means that the
difference is positive and can be represented with 8
bits. If it is one, it means that the difference is
negative and we need to borrow 1 from the next
digit. In the example, we subtract two 8-bit numbers,
the result we have borrows 1 from the next digit.

 Multi-precision subtraction: A fixed arithmetic unit

such as an 8-bit subtractor usually has a borrow in input
and a borrow out output. In the example, we subtract
two 16-bit numbers in two steps: First, we subtract the
two least significant bytes. If there is a borrow out, it is
stored in a special register. Next, we subtract the two
most significant bytes where the borrow in corresponds
to the borrow out of the previous operation. We can keep
doing this to subtract larger numbers, but we have to
make sure the microprocessor can store that result somewhere. If the final result has a borrow, the result is incorrect.

0x3F = 0 0 1 1 1 1 1 1 +

0xC2 = 1 1 0 0 0 0 1 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

3 F +

C 2

c 2
=1

c 1
=1

c 0
=0

1 0 0 0 0 0 0 0 1 1 0 1

4 5 3 F +

A 1 C 2

c 4
=

0
c 3

=
0

c 2
=

1
c 1

=
1

c 0
=

0
E 7 0 1

3 F +

C 2

c 2
=

1
c 1

=
1

c 0
=

0

0 1

c 2
=

0
c 1

=
0

c 0
=

1

E 7

4 5 +

A 1

B 2 3 A -

3 7 7 5

b
4
=

0
b

3
=

0
b

2
=

1
b

1
=

1
b

0
=

0

7 A C 5

3 A -

7 5

b
2
=

1
b

1
=

0
b

0
=

0

C 5

b
2
=

0
b

1
=

1
b

0
=

1

7 A

B 2 -

3 7

0x3A = 0 0 1 1 1 0 1 0 -

0x2F = 0 0 1 0 1 1 1 1

0x0B = 0 0 0 0 1 0 1 1

b
8
=0

b
7
=0

b
6
=0

b
5
=0

b
4
=1

b
3
=1

b
2
=1

b
1
=1

b
0
=0

3 A -

2 F

0 B
c 2

=0
c 1

=1
c 0

=0

0x3F = 0 0 1 1 1 1 1 1 +

0xB2 = 1 0 1 1 0 0 1 0

0xF1 = 1 1 1 1 0 0 0 1

c 8
=0

c 7
=0

c 6
=1

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

3 F +

B 2

F 1

c 2
=0

c 1
=1

c 0
=0

0x3A = 0 0 1 1 1 0 1 0 -

0x75 = 0 1 1 1 0 1 0 1

b
8
=1

b
7
=1

b
6
=0

b
5
=0

b
4
=0

b
3
=1

b
2
=0

b
1
=1

b
0
=0

3 A -

7 5

b
2
=1

b
1
=0

b
0
=0

0xC5 = 1 1 0 0 0 1 0 1 C 5

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

8 Instructor: Daniel Llamocca

SSIIGGNNEEDD NNUUMMBBEERRSS ((22’’SS CCOOMMPPLLEEMMEENNTT))
 The advantage of the 2’s complement representation is that the summation can be carried out using the same circuitry as

that of the unsigned summation. Here the operands can either be positive or negative.
 We show addition examples of two 8-bit signed numbers. The carry out c8 is not enough to determine overflow. Here, if

c8≠c7 there is overflow. If c8=c7, no overflow and we can ignore c8. Thus, the overflow bit is equal to c8 XOR c7.

 Note that overflow happens when the summation falls outside the 2’s complement range for 8 bits: [−27, 27 − 1].

 In general, for an n-bit number, overflow occurs when the summation falls outside the range [−2𝑛−1, 2𝑛−1 − 1]. The

overflow bit can quickly be computed as cn XOR cn-1.

 Subtraction: Note that 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵). To subtract two numbers represented in 2’s complement arithmetic, we first

apply the 2’s complement operation to B, and then add the numbers. So, in 2’s complement arithmetic, subtraction is
actually an addition of two numbers.

BCD ADDITION

 BCD addition is the typical decimal addition. If we want a circuit that performed BCD addition, this is what we would get:

 To avoid designing a custom circuit to do this, we want to use the same circuitry for

binary addition. If we input the BCD codes of 28 and 47 in a binary adder, they
would be interpreted as 0x28+0x47=0x6F which is not the BCD number 7755 == 00111111

00110011 that we want. Note that for the lower order nibble, the sum is
0x8+0x7=0xF=1111. And what we want is 1155 ((BBCCDD)) == 00000011 00110011, where 1 is the
carry to the next higher nibble. There is a difference of 0x6 between 0x15 and 0xF.
So, to get the proper BCD result we need to add 0x6 to 0x6F = 0x75.

 Another example: 19+57=76. 0x19+0x47=0x70. The results looks like a BCD code
but it is incorrect, we need to add 0x06: 0x70+0x06=0x76.

 In general, if the summation of two nibbles is greater than 0x9, we add 0x6 to the result.

 For example: 197995 + 353375 =

0x4EAD0A. To correct it, we do
0x4EAD0A + 066666 = 0x551370.

We can also do this using
multiprecision addition, where
only bytes can be added at a time.
The carries can come from either the
normal binary addition or from the
operation that adds 6 to a particular
nibble. This is depicted in the figure:

+14  [-27, 27-1] -> no overflow

overflow = c8c7=1 -> overflow!

+170  [-27, 27-1] -> overflow!

+92 = 0 1 0 1 1 1 0 0 +

+78 = 0 1 0 0 1 1 1 0

+170 = 0 1 0 1 0 1 0 1 0

c 8
=0

c 7
=1

c 6
=0

c 5
=1

c 4
=1

c 3
=1

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=1 -> overflow!

-170  [-27, 27-1] -> overflow!

-92 = 1 0 1 0 0 1 0 0 +

-78 = 1 0 1 1 0 0 1 0

-170 = 1 0 1 0 1 0 1 1 0

c 8
=1

c 7
=0

c 6
=1

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=0 -> no overflow

+92 = 0 1 0 1 1 1 0 0 +

-78 = 1 0 1 1 0 0 1 0

+14 = 1 0 0 0 0 1 1 1 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

overflow = c8c7=0 -> no overflow

-92 = 1 0 1 0 0 1 0 0 +

+78 = 0 1 0 0 1 1 1 0

-14 = 0 1 1 1 1 0 0 1 0

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=1

c 2
=0

c 1
=0

c 0
=0

-14  [-27, 27-1] -> no overflow

0x28 = 0010 1000 +

0x47 = 0100 0111

0x6F = 0110 1111 +

0x06 = 0110

0x75 = 0111 0101

4 E A D 0 A +

0 6 6 6 6 6

5 5 1 3 7 0

1 9 7 9 9 5 +

3 5 3 3 7 5

c 6
=

0
c 5

=
0

c 4
=

0
c 3

=
0

c 2
=

1
c 1

=
0

c 0
=

0

9 5 +

7 5

c 2
=

1
c 1

=
0

c 0
=

0

0 A +

6 6

7 0

c 2
=

0
c 1

=
0

c 0
=

1

A D +

6 6

1 3

7 9 +

3 3

c 2
=

0
c 1

=
0

c 0
=

1

4 F +

0 6

5 5

1 9 +

3 5

c 2
=

1

28(BCD) = 0010 1000 +

47(BCD) = 0100 0111

75(BCD) = 0111 0101

8(BCD) = 1000 +

7(BCD) = 0111

15(BCD) = 0001 0101

1(BCD) = 0001

2(BCD) = 1000 +

4(BCD) = 0111

7(BCD) = 0111

