
CAN Protocol Implementation

Arun Pasupathi, Gaurav Agalave

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: apasupathi@oakland.edu, gsagalave@oakland.edu

I. INTRODUCTION

The report will cover the methodology and

implementation of CAN Communication Protocol using the

HCS12 Microprocessor. To give a short introduction about

CAN,

 The controller area network (CAN) was initially

created by the German automotive system supplier Robert

Bosch in the mid-1980s for automotive applications [1] as a

method for enabling robust serial communication. The goal

was to make automobiles more reliable, safe, and fuel-

efficient while at the same time decreasing wiring harness

weight and complexity. Since its inception, the CAN protocol

has gained widespread use in industrial automation and

automotive applications.

 We have managed to cover Topics such as ASM

which is assembly Level Programming (for Delays), Timer

Function (Using Output Compare) and Interrupts (OC5

interrupt for Output Compare & Reg. CANnRIER for

Receiver Interrupt), which are to be discussed in detail in the

below topics.

II. METHODOLOGY

Overview of CAN:

To achieve design transparency and implementation

flexibility CAN has been subdivided into three layers [1],

• Object Layer: determines which messages are to be

transmitted; deciding which messages received by the Transfer

Layer are actually to be used; and, providing an interface to

the Application Layer related hardware. There is considerable

freedom in defining object handling.

• Transfer Layer: The Transfer Layer is principally

concerned with the transfer protocol, i.e. controlling the

framing, performing arbitration, error checking, error

signaling and fault confinement.

• Physical Layer: The Physical Layer covers the actual

transfer of the bits between the different nodes. Within a

network the physical layer has to be the same for all nodes.

 The CAN communication protocol is a CSMA/CD

protocol. The CSMA stands for Carrier Sense Multiple

Access. CD stands for Collision Detection. CAN is a message

based protocol. A message can be defined as a packet of data

which carries information. A CAN message is made up of 10

bytes of data.

Messages in CAN are sent in a format called frames.

A frame is defined structure, carrying meaningful sequence of

bit or bytes of data within the network. Framing of message is

done by MAC sub layer of Data Link Layer .There are two

type of frames standard or extended. These frames can be

differentiated on the basis of identifier fields.

A CAN frame with 11 bit identifier fields called

Standard CAN and with 29 bit identifier field is called

extended frame.

Standard frame:

Various fields in standard CAN are as follows-

 SOF - Start of Frame bit. It indicates start of message and

used to synchronize the nodes on a bus.

 IDENTIFIER - It serves dual purpose one, to determine

which node has access to the bus and second to identify the

type of message.

 RTR - Remote Transmission Request

 IDE – Identifier Extension

 R0 - Reversed bit

 DLC – Data Length Code. It is 4 bit data length code that

contains the number of bytes being transmitted.

 DATA– Used to store up to 64 data bits of application data

to be transmitted.

 CRC– Cyclic Redundancy Check

 ACK – Acknowledge (ACK) field. It compromises of the

ACK slot and the ACK delimiter. When the data is received

correctly the recessive bit in ACK slot is overwritten as

dominant bit by the receiver.

 EOF– End of Frame (EOF). The 7-bit field marks the end

of a CAN frame (message) and disables Bit - stuffing,

indicating a stuffing error when dominant.

 IFS - Inter Frame Space that specifies minimum number of

bits separating consecutive messages.

Extended Frame:

It is same as 11-bit identifier with some added fields SRR-

Substitute Reverse Request. The SRR bit is always transmitted

as a recessive bit to ensure that, in the case of arbitration

between a Standard Data Frame and an Extended Data Frame,

the Standard Data Frame will always have priority if both

messages have the same base (11 bit) identifier.

R1- It is another bit not used currently and kept for future use.

Initialization, Transmit and Receive Logic of CAN:

Initialization:

The process of Initialization is one of the most important

phases in CAN Protocol, which is explained in detail as

follows,

 CAN0CTL0 = 0x01 // MSCAN Control Register 0 -

Enter Initialization Mode

 Wait for Initialization Mode acknowledge INITRQ bit = 1

 CAN0CTL1 = 0x80 // MSCAN Control Register 1 -

Enable MSCAN module and LoopBack Mode

10100000
| |_______ Loop Back Mode Enabled
|_________ MSCAN Module Enabled

 CAN0BTR0 = 0x03 // MSCAN Bus Timing Register 0

00000011
||||||||__
|||||||___\
||||||____ |
|||||_____ |_ CAN Clock Prescaler = 4
||||______ |
|||_______ |
||________/
|_________>- SJW = 1 tq clock cycle

 CAN0BTR1 = 0x3A // MSCAN Bus Timing Register 0 -

Set Number of samples per bit, TSEG1 and TSEG2

00111010
||||||||__
|||||||___|
||||||____|- TSEG1 = 11
|||||_____|
||||______
|||________ TSEG2 = 4
||________/
|_________ One sample per bit

 CAN0IDAC = 0x10 // Identifier-Acceptance Control

Register - Set four 16-bit Filters

00010000
 || |||__
 || ||____ Filter Hit Indicator
 || |____/
 ||______
 |_______>- Four 16-bit Acceptance Filter

 Set the Acceptance and Mask Registers CAN0IDAR0 ~

CAN0IDAR7 and CAN0IDMR0 ~ CAN0IDMR7. Mask

registers are used to determine which bits of the

acceptance registers would be used to filter the incoming

messages.

 CAN0CTL0 = 0x00 // Exit Initialization Mode Request

 Exit Initialization mode and wait for normal mode.

Transmit:

 The main 2 goals achieved by MSCAN transmit-structure

are-

 Providing the capability to send out a stream of scheduled

messages without

 releasing the bus between the two messages

 Prioritizing messages so that the message with the highest

priority is sent out first

As shown in the below figure, the MSCAN has a

triple transmit buffer scheme that allows multiple messages

to be set up in advance and achieve a real-time performance.

Only one of the three transmit buffers is accessible to the

user at a time. A transmit buffer is made accessible to the

user by writing an appropriate value into the CANxTBSEL

register.

The procedure for transmitting a message includes the

following steps:

1. Identifying an available transmit buffer by checking the

CAN0TFLG register. If the buffer is full then flag is '0' else

'1'. If CAN0TFLG is 0x00 then program will wait for empty

buffer

2. Setting a pointer to the empty transmit buffer by writing the

CAN0TFLG register to the CAN0TBSEL register, making

the transmit buffer accessible to the user

3. Storing the identifier, the control bits, and the data contents

into one of the transmit buffers

4. Flagging the buffer as ready by clearing the associated flag

in CAN0TFLG

 After step 4, the MSCAN schedules the message for

transmission and signals the successful transmission of the

buffer by setting the associated flag in CAN0TFLG.

 If there is more than one buffer scheduled for

transmission when the CAN bus becomes available for

arbitration, the MSCAN uses the local priority setting to choose

the buffer with the highest priority and sends it out. The buffer

having the smallest priority field has the highest priority and is

scheduled for transmission first. The internal scheduling

process takes place whenever the MSCAN arbitrates for the

bus.

Receive:

As shown in below figure, the received messages are

stored in a five-stage input FIFO data structure. The message

buffers are alternately mapped into a single memory area,

which is referred to as the foreground receive buffer. The

application software reads the foreground receive buffer to

access the received message. The background receive buffer is

solely used to hold incoming CAN messages and is not

accessible to the user

 Whenever a valid message is received at the

background receive buffer, it will be transferred

to the foreground receive buffer and the RXF flag will be set

to 1. The user’s receive handler program has to read the

received message from the RxFG and then reset the RXF flag

to acknowledge the interrupt and to release the foreground

buffer.

 When the MSCAN module is transmitting, the

MSCAN receives its own transmitted messages

into the background receive buffer but does not shift it into the

receiver FIFO or generate a receive interrupt. An overrun

condition occurs when all receive message buffers in the FIFO

are filled with correctly received messages with accepted

identifiers and another message is correctly received from the

bus with an accepted identifier. The latter message is

discarded and an error interrupt with overrun indication is

generated if enabled. The MSCAN is still able to transmit

messages while the receiver FIFO is being filled, but all

incoming messages are discarded. As soon as a receive buffer

in the FIFO is available again, new valid messages will be

accepted.

CAN clock system:-

 The MSCAN clock generation circuitry is shown in

above figure. This clock circuitry allows the MSCAN to

handle CAN bus rates ranging from 10 kbps up to 1 Mbps.

The CLKSRC bit in the CANxCTL1 register defines whether

the internal CANCLK is connected to the output of a crystal

oscillator or to the E-clock. The clock source has to be chosen

such that the tight oscillator tolerance requirements (up to 0.4

percent) of the CAN protocol are met. Additionally, for a high

CAN bus rate (1 Mbps), a 45 to 55 percent duty cycle of the

clock is required.

Additional Features:

Output Compare:

 The output compare function is actioned at receiver

end, as creating the appropriate frequency based on the

received data via CAN Communication. The generated

frequency is given to the on board buzzer to create sound

based on the input string. We are using output compare

channel 5 for it.

The initialization of channel 5 is done as following,

 Writing 0x20 on TIOS register for enabling Output

Compare on Channel.

 Select OC5 action to toggle by writing TCTL1 =

0x0C.

 Pre-scalar factor is set to 2 by moving 0x01 to

TSCR2.

 TOF and C5F are cleared manually

 Forced output compare function CFORC, by setting

CFORC_FOC5 = 1.

 program will then wait until comparison success flag

is set i.e TLFG1(5) = 1, which will cause an interrupt

on OC5

Serial Communication Interface (SCI):

 The SCI is majorly used for getting a user interface

through which the data which is to be transmitted through can

is provided. This is done by using ‘Putty’ terminal from a PC.

User will be asked to enter a data which then will be transferred

to transmit node character by character. SCI receiver interrupt

is used to get data given from user.

Format of a SCI Frame:

For SCI initialization we have to select baud rate and

we have to enable receiving and transmitting operations.

 The baud rate selected is 9600, using registers SCI1BDH

and SCI1BDL (0x00 and 0x9C respectively).

 Transmit and Receive Enable is done by writing 0x00 and

0x0C on SCI1CR1 and SCI1CR2 respectively.

 Here the logic of the entire module of transmission is

controlled by the User interface, (i.e) the continuation of the

program is also decided by the user by transmitting a continue

command via SCI.

III. EXPERIMENTAL SETUP

The basic Project setup will be as shown below, with

a PC to host the UI and Node A which is connected serially to

the PC and Node B via CAN.

Hardware Used:

Dragon 12 board With HCS12 Microcontroller:

 Dragon 12 contains the following to facilitate the CAN

Communication,

 CAN0 (Highlighted the lighted Region) Port having the

CANH and CANL slots, which are internally connect to the

Rx and Tx of the Transceiver MCP2551.

 SCI Communication Interface to communicate to the PC to

make the User Interface possible.

 16 * 2 LCD which is used to display the Data which is to be

transmitted and received.

 Buzzer at slot J25 which produces a sound when a particular

frequency value is provide via PT5.

MCP2551:

The MCP2551 is a high-speed CAN, fault-tolerant

device that serves as the interface between a CAN protocol

controller and the physical bus. The MCP2551 device

provides differential transmit and receive capability for the

CAN protocol. It will operate at speeds of up to 1 Mb/s. It also

provides a buffer between the CAN controller and the high-

voltage spikes that can be generated on the CAN bus by

outside sources (EMI, ESD, electrical transients, etc.).

The typical Connection/Interface between MCP2551

and HCS12 is given below.

Software Flow:

 The basic software or the control flow pertaining to

the presented project is given below,

As like every System in the Industry, the Command

and Control Transfer authority is done via the User Interface

which in the current project is provided by the PC (Putty

Software) as shown in the Hardware Model. The Data and

Control is Transferred to the Dragon 12 Board (Transmission

Node) using the SCI Protocol (Serial Communication

Interface), which is actually a short distance serial

communication protocol.

Then from the Transmission node the Data that is

communicated is sent to the Receiver Node via CAN Protocol.

The Data then is sent across a series of IF Loops to get the

corresponding value which hardcoded in the receiver side

The value is sent to the Output Compare Function to

generate a waveform, which then generates a sound using the

On-Board Buzzer connected at Pin PT5.

 Then Finally the Transmission node checks for the

Transmission continuation with the UI via SCI and waits till

the next command or data is provided.

IV. RESULTS

The project has been carried out in two phases,

 Loop-Back Mode

Before Transmission Start

 The value that is to be transmitted is stored in an

array txbuff[] and has to be via CAN and stored in rxdata[].

After Transmitting:

 rxdata[] has received the data from txbuff[], as shown

in figure below.

 Module-Module Transmission

 Data is transmitted to Node A via SCI using the

Putty.

 Node A communicates the Data to Node B via CAN

Protocol

 There is a two way communication established

between Node A and PC (Putty).

(Details of Loop-Back and Module-Module CAN has

already been discussed in earlier topics) The results of bot the

phases are displayed below,

CONCLUSION

 In this project report we have discussed the basics of

CAN Implementation along with the integration of CAN with

SCI Protocol. Some of the unique benefits of CAN are Low

cost, Reliability, Flexibility, Good Speed, Multi-master

communication, Fault Confinement, Broadcast capability.

Due to the above unique features CAN has number of

application and uses in the current automobile industry and

many others as well.

 Our Motive for this project was to get a fair

knowledge of CAN and its principles, which we have

achieved through the above steps. CAN is a very vast area of

technology, and we have just scratched the surface of it.

REFERENCES

1. HCS12/9S12 AN INTRODUCTION TO SOFTWARE AND

HARDWARE INTERFACING (2nd Edition) by Han-Way

Huang.

2. MICROCHIP Transceiver MCP2551 User Manual

(http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pd

f)

3. Freescale CAN Reference Manual

(http://www.freescale.com/files/microcontrollers/doc/data.../BC

ANPSV2.pdf)

4. Understanding Controller Area Network

(http://www.engineersgarage.com/article/what-is-controller-
area-network?page=1)

http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf

