EXPLORING RGB LEDS AND COLOR SCIENCE

A Presentation by Ashley Turner, Kurtis Craig and Malcolm Whitehouse

PROJECT OBJECTIVES

• Implement RGB LED control and explore applications and other concepts.

- Mode 1: Control the color using the DIP switches (256 choices).
- Mode 2: Color changes based on measured temperature.
- Mode 3: Navigate the CIE Chromaticity Diagram.

THE SYSTEM

RGB LED HARDWARE SETUP

- A common-anode RGB LED strip is driven by 3 MOSFETs.
 - PP0 PP2 drive the gates of the 3 MOSFETs.
 - LEDs are connected to separate +12V power supply on the drain.
 - The source of each MOSFET is connected to ground.

MODE 1: DIP SWITCH CONTROLLED COLOR

Using the DIP switch to choose between 256 different colors.

MODE 1 – DIP SWITCH CONTROL

- DIP switches are used to change the color displayed by the RGB LEDs.
- Controls modeled after VGA technology control.
 - Switches 1-3 control red.
 - Switches 4-6 control green.
 - Switches 7-8 control blue.

MODE 1 – DIP SWITCH CONTROL

- Implementation of the LED control.
 - Timer + Interrupts method used in this case.
 - "HCYCLES" and "LCYCLES" modified based on switch positions.
 - Interrupts toggle corresponding bits (PORTP(4), PORTP(5), and PORTP(6)).
 - This method has its weaknesses.
 - Interrupts "compete" when 2 + LEDs are on the same duty cycle.
 - At 6kHz, the artifacts of this issue are very visible.

Let's see how it works!

MODE 1 – DIP SWITCH CONTROL

- This method can be improved!
 - Minimize size and number of interrupts.
 - Reduces the probability that a conflict will occur.
 - "Nested" Interrupts
 - Enable interrupts inside another ISR.
 - Can be tedious to implement!
- The natural choice in our case is the use of the PWM channels.

MODE 2: TEMPERATURE CONTROLLED COLORS

Using the On-Board Temperature Sensor to Control the LED Color

MODE 2: TEMPERATURE-DEPENDENT COLOR

• In this mode, we use the on-board temperature sensor to control the color of the RGB LEDs.

MODE 2: TEMPERATURE-DEPENDENT COLOR

- In this mode, we use the on-board temperature sensor to control the color of the RGB LEDs.
- Using the PWM Channels to drive the LEDs.
- Change duty cycle with the following formulas:
 - When the temperature is between 16°C and 24°C....

$$Duty cycle \% = \frac{temperature - 16}{8} \times 100$$

• When the temperature is between 25°C and 43°C....

Duty Cycle % =
$$\left(\frac{\text{temperature} - 24}{19} \times -100\right) \times 100$$

MODE 2: TEMPERATURE-DEPENDENT COLOR

- The color transition is not as smooth as we intended....
- The resolution of the temperature sensor is only 1°C!

Let's see how it works!

MODE 3: NAVIGATING THE CHROMATICITY DIAGRAM

Using a joystick to navigate the CIE 1931 Chromaticity Diagram

- The joystick is a 2- axis device
- Each axis is a 10 K Ω potentiometer with common ground
- Supplied by 5 V from the Dragon12 board
- Read by pins PAD 00 and 01
- Converted to digital by the onboard A/D converter
- X formula: if (x<= 400) then x = x;
- else
- x = x * 800/1020

- The CIE Chromaticity Diagram
 - International Commission on Illumination, 1936 Standard
 - The gamut is where the "web safe" colors reside
 - Hue vs. Saturation

- Calculating the duty cycle of each color at every point.
 - "Divided" the CIE diagram by red, green, and blue.

Chromaticity diagram from http://dba.med.sc.edu/price/irf/Adobe_tg/models/ciexyz.html

- Calculating the duty cycle of each color at every point.
 - "Divided" the CIE diagram by red, green, and blue.
 - Duty cycle of each color is determined by the distance from each line.
 - Each line represents the dimmest setting of each color.
 - Duty cycle increases with distance from the line.
- Example calculation Duty cycle of red. Distance from the Line = $\frac{|900x + 750y|}{1171}$ Red Duty Cycle = Distance from the Line $\times \frac{100}{250}$

Let's see how it works!

APPLICATIONS

- Improved parking lot flow:
 - Light color changes with parking spot availability.
- Stadium lighting aesthetics:
 - Change colors depending on which teams are playing.
- LED Traffic lights:
 - High efficiency and low maintenance.

QUESTIONS?

THANK YOU!

REFERENCES

[1] Nave, R. Hyperphysics- Light and Sound. 4 12 2014. Internet.[2] Parallax Inc. 4 12 2014. <www.parallax.com/rt>.