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Abstract—RGB LEDs are an up-and-coming technology that 

can be used to create, in theory, any color in the spectrum of 

visible light. In this project, we took the opportunity to 

familiarize ourselves with this technology and learn about the 

implementation and application of RGB LEDs, as well as other 

related topics. In addition, we learned about how color is 

measured and how to work with RGB LEDs effectively.In 

addition, we learned from our mistakes in implementation that 

time-based functions take great care to implement well, and 

that it is important to know the limitations of the technology 

one is working with.  

I. INTRODUCTION 

This project was chosen as an opportunity for us to learn 

about the implementation and applications of RGB LEDs. 

LEDs in general, as energy-efficient as they are, are taking 

over in a big way. With such a large number of lighting 

applications from street lights to house-hold light bulbs 

being replaced with LEDs, it has become clear to us that, as 

electrical engineers, any knowledge of and experience with 

LEDs that we can accomplish will go a long way in our 

careers and in our daily lives. 

 

This project in particular covers some fundamental points 

on LED control. In the process of implementing Mode 1, 

where the color displayed by the RGB LED is controlled by 

the values on the DIP switches, we learned that several 

timer-based functions in conjunction can be tedious to 

implement. We learned improved methods for the use of 

timers and the dangers of irresponsible programming. With 

respect to the function of this mode on its own, the possible 

applications are many. Some examples of the application of 

user-controlled RGB displays include, for example, solar-

powered lawn lamps of which the user may change the color 

for holidays or however they please.  

 

In Mode 2, we made use of our knowledge of the PWM 

channels and the ADC functions to control the color of an 

LED with input from a sensor. The possibilities are virtually 

endless when it comes to sensor-controlled RGB LED 

applications. One possible example, as mentioned in the 

presentation, would be to mount RGB LEDs in parking lot 

lights, indicating by their color whether the parking spot is 

taken or available.  

 

In Mode 3, the color displayed on the RGB LED was 

controlled by a joystick (Originally an accelerometer. We 

will cover this in the results section.). The user is asked to 

imagine that they are controlling a curse on the CIE 1931 

xyz Chromaticity Diagram, and as he/she changes the 

position of the joystick, the color displayed by the RGB 

LED corresponds to the color coordinates of the cursor’s 

position.  

 

 For us at this time, implementing this mode was a great 

exercise in learning, intuitively, the interactions between 

colors and gaining an understanding of this widely-accepted 

measurement standard. In the real world, an optimized 

version of this device could be used as a validation tool in 

the process of engineering parts that contain LEDs. If such a 

device could be programmed by a user to display any of the 

possible color coordinates, then a developer or customer 

could use this device to validate products against their color 

requirements.  

II. METHODOLOGY 

A. Hex Keypad 

The hex key pad code is the main driver for the different 

modes, using this code we would be able to switch between 

one of 3 modes by simply pressing the assigned button for 

that mode. The hex key pad code has several things going 

on, we will not talk about his due to report length limits. 

When integrating the code for the other modes (starting with 

mode 1) into the code for the hex key pad we encountered a 

major problem. We suspect that the delay function used to 

operate the LCD display is also used to run some of the 

timer PWM signals for the RGB LEDs. This issue created 

problems with controlling the RGB and LCD so the 

program would get stuck. We attempted several solutions to 

try to fix the issue but none worked, due to time constraints 

were not able to include this in the final presentation. 

 

B. RGB LED Strip 

 

The RGB LED strip was an idea to get more noticeable 

color difference due to the higher output LEDs and number 



of LEDs used. While you can buy RGB LEDs in many 

packages the LED strips are commonly available. An issue 

with this setup is that these strips are designed to run at 12v 

and the HCS12 only puts out a logic voltage level of 5v. 

Another issue was even though we had more RGB LEDs 

and the light output was higher, how would we best 

“display” theses colors. This is when we decided we needed 

a diffuser to better mix the colors. 

C. Mode 1 –Controlling the RGB with DIP Switches 

In Mode 1, the eight DIP switches control the color 

displayed on the RGB LED. The logic used to display the 

colors is modeled after the way VGA calls out colors using 

eight bits. DIP switches 1-3 control red, switches 4-6 

control green, and 7-8 control blue. We used case statements 

to change the value of “HCYCLES” and “LCYCLES” for 

each LED, where the duty cycle is proportional to the binary 

value of the two or three DIP switches controlling the color. 

This means that there are eight different duty cycle values 

for red and green, and only four different duty cycles for 

blue. 

 

In this mode, the LEDs are driven using timer interrupts. 

This code was modeled after the example code “unit9c.c” 

uploaded on Moodle and used functions from the “timers.h” 

file provided to the class by Lincoln Lorenz. Timer channels 

1-3 were used in this case to call interrupts that toggled their 

corresponding bit on Port P, which in turn toggled the signal 

on each color of the RGB LED. The “main” portion of the 

code in Mode 1 constantly checks the DIP switches, 

changing the number of clock cycles between the toggles of 

each bit accordingly, as previously states. 

D. Mode 2 – Temperature-Controlled Colors 

 

In Mode 2, the color displayed by the RGB LEDs was 

controlled by the temperature reading from the on-board 

temperature sensor. The goal, originally, was to create a 

smooth fade between blue at cold temperatures, white at 

room temperature, and red at warm temperatures. 

Unfortunately, this smooth transition proved impossible. As 

it turned out, the temperature sensor on the development 

board had a resolution of only 1ᵒC. In order to create the 

smoothest transition, then, we found the largest range of 

temperature that we could reach during a demonstration in 

class, and based the calculations of the duty cycle of each 

color on this range of temperatures.  

 

We determined the definition of “cold” and “warm” 

based on the temperatures we could reasonably reach in 

demonstration. By holding a frozen lunch box cooler to the 

board, we found we could reach 16ᵒC, and we could reach 

43ᵒC by applying heat from a dryer to the temperature 

sensor. 

 

 
Figure 1- Duty Cycle with Respect to Temperature 

The interesting problem in this mode was determining 

how to fade from blue to white, and from white to red. As it 

turns out, in additive color mixing, light blue can be created 

by driving red and green at the same duty cycle as one 

another, but with a lower duty cycle than blue. The greater 

the difference between the duty cycle of blue and the duty 

cycle of red and green, the closer the displayed color will be 

to blue. As the duty cycle of red and green increases 

towards the duty cycle of blue, the color shifts more towards 

white. The same concept applies to fading between white 

and red by holding red at 100% duty cycle, and decreasing 

the duty cycle of blue and green together as the temperature 

increases. We discovered the properties of additive color 

mixing by experiment, changing the duty cycles of the 

LEDs until we gained an intuitive understand of the result of 

mixing different colors of light together. 

 

In Mode 2 and Mode 3, we decided to drive the LEDs 

using the PWM channels for simplicity in programming. 

The duty cycle, calculated using the algorithm described 

above, would be set continuously in an infinite loop, using a 

ratio of the number of clock cycles that make up the entire 

period. These calculations were carried out in a function that 

accepted two arguments: Color and duty cycle percentage. 

“Color” was simply an integer, 0 -2. We declared three 

integers that related “RED,” “BLUE,” and “GREEN,” to 

these integers, so an example of such a function call would 

look like “set_PWM(RED, 50).” 

 

𝑃𝑊𝑀𝐷𝑇𝑌𝑛 =  
𝐶𝑦𝑐𝑙𝑒𝑠 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑

100
 × 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 % 

 

E. Mode 3 – Navigating the CIE Chromaticity Diagram 

 

The reference for the colors to be created is the CIE 

Chromaticity standard graph. CIE is the International 

Commission on Illumination and the body responsible for 

lighting and color standards around the world. The graph in 

figure 2 shows the range of visible colors as can be seen by 

the human eye. The Y-axis is the hue and the X-axis is the 

measure of color saturation. The triangle portion of the 



graph is called the gamut and represents the colors that can 

be reproduced correctly with RGB LED’s. This also 

explains the color variation in the accompanying video of 

the project as the graph is referenced outside this area. 

 

 
Figure 2 - 1931 Chromaticity Diagram from Reference [5] 

Originally, we had planned on using an accelerometer for 

this mode, but due to the noise of the unit (failure of the 

accelerometer) we chose to try some different hardware as a 

last-ditch effort to test whether this noisy information was 

the fault of our design, or an unavoidable caveat of the 

accelerometer. This new hardware, an analog, dual-axis 

joystick, produced an extremely clean and reliable signal. 

This resolved our problem with this mode, and since then 

we have had no problems with this code. Naturally, the 

formulas calculating the duty cycle of each color at all 

points in the color space could use plenty more 

optimization, but the code does work for our purposes. 

 

In addition, the color coordinate of the color currently 

displayed on the RGB LEDs were also displayed on the 

LCD. We found that the color displayed on the RGB LEDs 

was very close to the corresponding color coordinates on the 

actual CIE 1913 Chromaticity Diagram, meaning that we 

had reached our objective for this mode.  

 

The first thing we needed to do was translate the position 

of the joystick to a position on the color space. Using the 

debugger feature of the CodeWarrior IDE, we found the 

integer values of the up and down position and the left-right 

position at each extreme in the x and y directions of the 

joystick. Then, we simply used a ratio to convert these 

values into color space values. For example, in the x 

direction, we found that we got 0 when the joystick was 

completely to the left, approximately 400 when the joystick 

was at rest, and approximately 1000 when the joystick was 

all the way to the left. The results were the same for the up-

down position. Since the value of the integer was not 

completely linear with its position, we used a different ratio 

to calculate the color coordinates whether the joystick was 

to the left or right, and similarly for up and down.  

 

Once we converted the position of the joystick to a 

position on the color map, we then needed to calculate the 

appropriate duty cycle of each color LED at any given point. 

We chose to do so by dividing the color map into three 

threshold lines like in the diagram below. The duty cycle of 

red, for example, would increase as the distance of the 

current point was below the red line and farther away from 

the line, by calculating the distance of the current point from 

this line and setting the duty cycle of red proportional to this 

distance from the line. The same sort of calculations were 

performed for blue and green. See the calculations for the 

duty cycle of red below as an example. Note that this 

calculation only applies when the “cursor” is below the line 

for red. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐿𝑖𝑛𝑒 =  
 900𝑥 + 750𝑦 

1171
 

𝑅𝑒𝑑 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐿𝑖𝑛𝑒 ×  
100

250
 

 

These coordinates were then passed to the set_PWM() 

function and the duty cycle of the waveform for each color 

was determined by the coordinates distance from its 

respective side of the gamut. The further it was away, the 

more duty cycle increased.This was accomplished by a 

series of “if, else if” statements. 

 



 
Figure 3 - 1931 Chromaticity Diagram from Reference [2] 

III. EXPERIMENTAL SETUP 

A. Hex Keypad 

 

The initial process was to just to get the key pad to be 

able to detect that a button was pressed and display what 

mode the program would be in based on the button that was 

pressed. Once this was verified each mode was to be 

integrated into the hex key pad code so it would all run from 

one file. If it did not run as expected some parts were 

commented out and some more lines of code were added to 

give simple output that would be seen if it was doing as 

expected. The process was done until some expected results 

were seen; by this you can sometimes debug large code 

structures quicker. This might only be good in such cases 

where the number of break points is limited, which was the 

case when using CodeWarrior. 

 

B. RGB LED Strip 

The strip we used has two sets of three LEDs. Each set 

of three LEDs for each color are run in series with a resistor. 

Then that is run in parallel with one other set of three RGB 

LEDs. In order to use the RGB LED strip we needed a way 

to drive them at medium to high switching speed at a 

voltage that is higher than what the HCS12 runs at. These 

LEDs are connected in a common Anode configuration (Fig. 

4) and require 12v to run them. 

 
Figure 4- From Reference [4] 

To drive these we decided to use an N-channel MOSFET, 

the one we used is BS170 from Fairchild Semiconductors 

[1].Considerations on selecting a MOSFET to drive the 

RGB LEDs are switching speed and current handling. The 

switching speed on the BS170 MOSFET is 10ns (as seen in 

figure 5), which would give about 100MHz, which is well 

above the 24MHz that the HCS12 will run at. The current 

handling of the MOSFET will have to support the current 

draw of each color in the RGB LED. This is a max of 

100mA(each color) as seen in figure 6. 

C. Mode 1 – Controlling the RGB with DIP Switches 

 

In Mode 1, the hardware setup included the onboard DIP 

switches and RGB LED, and the MOSFET to RGB LED 

strip previously described. In this case, the RGB LED strip 

was driven by pins PP4, PP5 and PP6 for convenience, since 

the code was originally written to work with the onboard 

RGB LED. The RGB LED strip was added later when it 

became clear that the on-board RGB LED would be difficult 

to display to the class.  

 

This mode implemented timer-thrown interrupts as the 

source of the PWM signal. Each timer regularly called its 

own interrupt that checked the corresponding timer counter 

against the “HCYCLES” and “LCYCLES” values for the 

color driven by that timer, and toggled the appropriate bit of 

Port P when the given amount of time had passed.  

 

When the code was run, we expected to see the color 

displayed by the RGB change according to the position of 

the DIP switches in a specific way. The duty cycle of each 

LED was expected to increase in proportion to the binary 

value of each section of the DIP switch. For example, 

Switch 1 would be the most significant bit describing the 

duty cycle of the red LED, and Switch 3 would be the least 

significant bit. If all of the switches were off, we would 

expect to see no light at all, and if they were all on, we 

would expect to see white. 

 

 



D. Mode 2 – Temperature-Controlled Colors 

 

Just like in Mode 1, Mode 2 controls the RGB LED strip 

through the MOSFETs. The only differences between the 

hardware setup between this mode and the previous is that 

this mode also uses the LCD to display the current 

temperature, and uses the temperature sensor as the input 

instead of the DIP switches.  

  

As for the software, we accessed the temperature 

sensor’s measurements by reading ADC pin 5. Its 

measurement was constantly displayed on the LCD. As a 

result of the coding described in the Methodology section, 

we expected to see the RGB LEDs display white at 24ᵒC, 

fading to blue as the temperature increases with “true” (only 

blue LED on) blue displaying at 16C and below, and fading 

from white to red as the temperature increased from 24C, 

displaying “true” red at 43C.   

 

E. Mode 3 – Navigating the CIE Chromaticity Diagram 

 

This mode uses a joystick to navigate the above graph 

and produce the colors at each x and y coordinate. To map 

the x and y coordinates a joystick was wired to a breadboard 

and the pin for the x axis was connected to PAD 00 and the 

pin for the y axis was connected to PAD 01. A function, 

ad0conv(0), from main.asm was called to average four 

successive readings of the A/D and put them in intermediate 

variables buff0 and buff1. This method was written by Dr. 

Haskell  and is from the Learn by Example text by him and 

Dr. Hanna. [3] The x and y coordinates were then 

determined by multiplying the coordinate by its axis length 

and dividing by 1024. 

 

IV. RESULTS 

A. Hex Keypad 

 

While we tried many ways to debug the problem we 

were unable to resolve the underlying issue. This issue is 

thought to be from the Timers that the RGB and LCD use 

given more time, this method could have been successfully 

allowed us to find the problems and fix them.  One thing 

that was noticed is that if all the parts that do anything with 

the LCD is commented out and mode 1 is run first then run 

mode 2 is run it would work. Later on it was notices that 

mode 1  did not work quite right but mode 2 did when using 

this method, but if mode 2 was run first then mode 1 it 

would not work at all (mode 3 what not integrated to the hex 

key pad code due to time constraint. 

 

B. Mode 1 – Controlling the RGB with DIP Switches 

 

We have found that the DIP switches did indeed control 

the color displayed on the RGB LEDs, and that each color 

was controlled by the switches we expect to control those 

colors, but we have found that the duty cycles applied to the 

LEDs did not necessarily correspond linearly with the 

binary value of each set of switches. In fact, the correlation 

between the DIP switch values and the duty cycle of the 

color seemed to invert or remain the same randomly. 

 

We have determined that this result is due to the manner 

in which we toggled the bits of Port P. Since we used a logic 

command to toggle the bit, the polarity of the generated 

PWM would depend on the most recent value of each bit 

when the DIP switch value was changed. In order to fix this 

issue, we would recommend clearing and setting the bits 

according to the “HCYCLES” and “LCYCLES” count, 

rather than blindly toggling the bits in all cases. The reader 

may find a demonstration at: 

https://www.youtube.com/watch?v=Y76o0OshgPQ&feature

=youtu.be 

C. Mode 2 – Temperature-Controlled Colors 

This mode ended up working exactly as expected. At 

room temperature of 24C, the RGB LEDs displayed white. 

As the temperature decreased, the color displayed faded to 

blue at 16C. As the temperature increased, the color 

displayed faded from white to red, reaching red at 43C. To 

improve upon this code, we would recommend increasing 

the range of temperature in order to smooth out the color 

transition and use a temperature sensor with a higher 

resolution. The reader may find a video demonstration at: 

https://www.youtube.com/watch?v=y552ksX6uTU  

D. Mode 3 – Navigating the CIE Chromaticity Diagram 

 

Figure 5 - MOSFET Switching Characteristic from Reference [1] 

https://www.youtube.com/watch?v=Y76o0OshgPQ&feature=youtu.be
https://www.youtube.com/watch?v=Y76o0OshgPQ&feature=youtu.be
https://www.youtube.com/watch?v=y552ksX6uTU


The waveform was then sent to LEDs. As we watched 

the coordinates and looked at the locations on the graph, the 

colors displayed on the LED strip matched the location on 

the chromaticity graph. Success! The reader may find a 

video demonstration at: 

https://www.youtube.com/watch?v=96VHouoOjP4&feature

=youtu.be 

CONCLUSIONS 

We learned a lot about designing a system to run 

on the HCS12 microcontroller. We had many issues, while 

many where resolved we still had many more. Some 

improvements we could have made to the overall project 

could include: More careful programming with the timers, 

we could have obtained a better temperature sensor with a 

larger range, and optimizing the math for the color model 

and better hardware. 
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Figure 6 - MOSFET Electrical characteristics from reference [6]. 
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