
The Digital Alarm Clock

Rajiv Varma, Maris Prieditis

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: rnvarma@oakland.edu, mmpriedi@oakland.edu

Abstract—The purposes of the project were to create a digital

alarm clock with a “wave to snooze” feature and also learn

more about interrupts and other components of the HCS12.

Through hard work and intense coding sessions, we were able

to synthesize our project on the Dragon12-Light board.

I. INTRODUCTION

The scope of this project was to use various C and
assembly functions to create a rudimentary digital clock with
alarm functionality on the LCD (Figure 1). Additionally, this
clock was to have an alarm and silence feature that utilized
the HC-SR04 ultrasonic rangefinder (Figure 2) so the user
does not have to actually press a button when the alarm is
blaring.

This Final Project Report includes three sections:
methodology; experimental setup; and, results. After this
introduction, the methodology part goes step-by-step through
the brainstorming and thinking behind solving the problem
of creating a digital alarm clock. This section is segregated
into various sectors that look at different aspects of the
project beginning with pen-to-paper and ending with coding
within CodeWarrior. The experimental setup subsection
discusses the expectations and results of testing the project. It
therefore touches on the hardware and software tools that we
use to verify the stability and fidelity of the system. The
results section simply lists all of the results we obtained.
Multiple pictures and a video of the running project are
included in this section. Finally, the conclusions section
wraps up the entire report.

The motivation behind this project was two-fold: we
wished to start with a simple project and build-up from it;
and, we thought this project would utilize various hardware
components from our lab sessions with software techniques
that we have learned from lectures. Essentially, our
motivation was to use what we learned in ECE 470 and
apply it to a real-world problem.

With the success of this project, the implications are that
everyone can code a working project with knowledge and
learning. With plenty of work, it was possible for us to start
with a simple digital clock, but then add complexity to it
layer-by-layer. Each level built upon the previous one, with
the lower levels acting as supporting pillars in the project.

This means that our experience is non-unique: others can
replicate our success. As such, it is a great learning tool, and
both of us are more knowledgeable because of it.

The topics that we learned in class that applied to our
project were the serial and parallel input/output ports, C
language programming, interrupts, and timer functions [1].
Also, the lab on the ultrasonic rangefinder was very helpful
in our setup [2].

On our own, we had to read through the textbook to find
various bits of information on the HCS12 board. We also
referenced the instruction manual PDFs and used the Internet
to research how to create C functions within the main.c file.
Using previous labs, we were able to create combination
ASM/C functions suing main.asm. In reality, a lot of this
project came down to debug sessions: e.g., testing and
retesting until it works.

The ultimate applications of our project include home
and business use. However, with further optimization and
code-sculpting, this project could be adapted for commercial
use as the underlying hardware and code behind a digital
alarm clock that’s sold to end users.

Figure 1: Dragon12-Light Board.

Figure 2: HC-SR04 Ultrasonic Rangefinder.

II. METHODOLOGY

This section explains how we designed our project.

A. Statement of Design

Our overall concept for this project was to use interrupts
and the timer counter to implement an alarm clock. After
connecting the required components to the board (Fig. 3), we
used CodeWarrior to write the code. We ended up using
multiple nested “if” statements and C functions to achieve
success. Our delay function was written in combination
ASM/C.

B. Hypothetical and Theoretical Considerations

From the outset, my partner and I thought an alarm clock
was an interesting and useful application that could be
implemented within the confines of the HCS12 processor
and CodeWarrior. From Dr. Llamocca’s lectures, we knew
that operating and writing to the LCD screen was practical.
We also knew about the interrupts and the timer counter
from previous labs to use the rangefinder in concert with the
LCD. Looking at earlier lectures, we found more information
on using the DIP switches. It was actually pretty simple to
get our thoughts down on paper and prepare a prototype.

C. Rangefinder

The HC-SR04 rangefinder was used to stop the alarm.
We used the code from our Lab #4. The idea behind it was
the same as in the lab – make the rangefinder constantly
check for a returned distance value and compare that value to
a hardcoded value. If the value was within our acceptable
range, we would have the system snooze the alarm. In our
case, we also made sure the system checked if the alarm was
currently alerting the user. In this case, it would snooze; else,
it would not report anything or perform any action.

D. LCD Screen

For the LCD screen, we used the provided C functions

from Dr. Llamocca to write to and clear the screen. I ended

up using a number of for-loops to cycle between hardcoded

arrays of numbers and strings.

E. DIP Switches

For the DIP switches, I decided to use switch #1 for user

control of the alarm. I also added 2 demo switches at #4 and

#8. Switch #4 allows the user to initiate an alarm 5 seconds

in the future, while switch #8 drastically speeds up the

clock.

F. Overall Hardware Design and Considerations

For the overall hardware design, we figured that if we

could start with a basic framework, we could then advance

the project from there. Unfortunately, we were not able to

implement many of our more imaginative ideas.

III. EXPERIMENTAL SETUP

We verified the working condition of the project by
implementing a demo switch to speed up the output on the
LCD screen. This allowed us to visually show that the clock

cycles through an entire day and continues from there. We
also used CodeWarrior to debug the program on my
Windows laptop. The oscilloscope was used to make sure the
timer counter works.

When the system was run, we obtained our expected
results. The system was able to trip the alarm 5 seconds after
it started (hardcoded to ring at 1:00:05 am) if switch #1 was
also “on”. Switch #4 was able to change the setAlarmValue
for 5 seconds into the future. Switch #8 correctly minimized
the elapsed time. The RGB LED and LCD screen both
functioned as expected throughout the many tests.

IV. RESULTS

Our prototype board is shown in Figure 3. This includes
some rough text on the LCD screen before we finalized it.
We also cut down the length of the wires for cosmetic
reasons.

Figures 4-7 show the operation of the digital alarm clock.
Figure 4 has the clock in normal operation. In Figure 5,
switch #1 is “on” so the alarm is set to run by the user.
Figure 6 shows what happens when the alarm is alerting the
user. Figure 7 shows the response of the system to the user
waving their hand in front of the rangefinder.

I also created 2 videos – one of a time-lapse of 24 hours
of clock time, and one showing the normal operation of the
system.1

Overall, the results we obtained were expected from what
we coded. We created a simple clock with an alarm
component, and our system does in fact function correctly.
Of course, that does not mean we are satisfied with our
results. There are numerous areas that I wish we had been
able to explore and incorporate into our design.

The main area I wish we had solved was the user input
section. As it is, there is zero user input for the designated
alarm time. I hardcoded the alarm to run 5 seconds after the
system starts up. This is a poor implementation, and it is only
good for testing purposes. The ideal method would have
probably been to utilize the numeric keypad with a menu
system on the LCD screen with feedback to the user. In fact,
a scrolling LCD screen would have been a very interesting
addition to our system.

Obviously, including a sound component into the system
would have been optimal. I wish we had been able to at least
use the speaker buzzer on the board. Unfortunately, I had
trouble coding PT5 within the numerous for-loops, and the
results I was getting during debugging were suboptimal.

Ideally, we would have fashioned a more-accurate clock.
The reliance on the for-loops plus the functions that run
every second of clock-time very likely contributed to a delay
of time that accumulated over time. Also, if we had figured
out a way to synchronize our clock with GPS, this issue
would have been resolved.

Another very interesting idea would have been to add a
communications link (likely SCI) between the board and a
laptop, such that the user could input a designated clock and
alarm time via keyboard or even potentially through the
Internet.

1 The videos are included in the Moodle upload folder.

Additionally, the connection of the board to an external
light source (perhaps a table lamp next to a sleeping user)
could have allowed the system to slowly turn the lights on in
place of audibly alerting the user. Another application would
potentially be to allow the user to set designated times for the
system to turn on and off the lights in their household.

Lastly, since the board was dependent upon power either
from the USB or the wall adapter, it would have been a nice
challenge to make it self-sustaining, in as much as it could
just run from a local battery. This would also stand as a
proof-of-concept for a backup power source so that the clock
would continue to function in the event of a power-loss.

Figure 3: Preliminary clock and alarm.

Figure 4: Normal clock operation.

Figure 5: Alarm set via DIP Switch #1.

Figure 6: Alarm alerting user via text and RGB LED.

Figure 7: Snooze via rangefinder.

CONCLUSIONS

In conclusion, while we were able to produce a working
version, there was much left to be done to fully complete the
system. The menu system and numeric user input are on the
top of that list, and without either of those features, our
system is not commercially viable. Listed in the results
section are all of our future goals for the project.

However, we did learn a lot about LCD screens,
interrupts, and the importance of taking into account all

factors of latency (both hardware and software) in a digital
system.

In retrospect, though there were some obstacles and
unanticipated challenges, I am glad I that I was able to work
on this project, and I am happy that it aided me in advancing
my education in microprocessor-based system design.

REFERENCES

[1] ECE 470 Lecture Notes. Llamocca, Daniel. Fall 2014.

[2] ECE 470 Laboratory Experiment Notes. Lorenz, Lincoln. Fall 2014.

