
CAN Node using HCS12

Ketan Kulkarni, Siddharth Dakshindas

Electrical and Computer Engineering

Oakland University, Rochester, MI , USA

Dec 02, 2014



Outline

• Brief Introduction of CAN

• CAN in HCS12

• Project Setup and Details

• Demonstration



Brief Introduction of CAN

• Message Based Protocol which facilitates communication

between various devices

• Originally was designed for automotive applications but is

widely used in industrial automation, home appliances, etc.

• CAN Frame Format:



Brief Introduction of CAN (contd…)

• Messages are distinguished by message identifiers

• The identifier is unique to the network and helps define the

priority of the message

• Access conflicts on the bus are resolved by a “wired and”

mechanism, where the dominant state overwrites the

recessive state



CAN in HCS12

• HCS12’s MSCAN12 module supports CAN 2.0A/B. Also supports

standard and extended data frames with a programmable bit rate up

to 1 Mbps

• The MSCAN12 has a triple transmit buffer scheme which allows

multiple messages to be set up in advance and achieve an optimized

performance



CAN in HCS12 (Contd…)

• The received messages are stored in a five stage input FIFO

• The foreground buffer is accessed to read the received message

• The background buffers hold incoming CAN Messages

• The CPU is interrupted to read the message only when the message 
ID passes the identifier acceptance filter.



CAN in HCS12 (Contd…)

• Transmitting Scheme:

1. Check to see if any of Tx Buffers are empty (by reading CANxTFLG)

2. Select the lowest of the 3 empty buffers for Tx (by writing CANxTFLG to
CANxTBSEL)

3. Load the ID, Data, Data Length & Internal Priority in CANxTXIDR0,
CANxTXDSR0, CANxTXDLR & CANxTXTBPR respectively

4. Flagging the buffer as ready by clearing the associated TXE flag (by
writing a 1 to the buffer register that is free, that is, writing 1 to
corresponding buffer of CANxTFLG)



CAN in HCS12 (Contd…)

• Receiving Scheme:
1. Setup Identifier Acceptance Filter Mode (we have set it to four 16-bit

acceptance filters mode by setting CAN0IDAC = 0x10)

2. Identifier & Mask Registers:

Mask Registers (CANxIDMR0):

If 1 then corresponding bit NOT used for ID filtering

If 0 then corresponding bit IS used for ID filtering

Identifier Acceptance Registers (CANxIDAR0):

11-bit identifiers (for standard) setup as B5-B7 in IDAR0 and B0-B7 in IDAR1

3. Setup interrupt for Rx CAN message processing



Project Description

• Project Objective: To Demonstrate the creation and working

of CAN Node

• The project was carried out in 3 steps:
1. Setup hardware for CAN

2. Put CAN module in “loop-back mode”

3. Setup hardware and software for 2 Dragon-12 boards



Project Description (contd…)

• Hardware Setup:
• CAN transceiver is basically used to change the logic levels to be

able to drive the bus

• The Dragon-12 lite board does not contain the CAN Transceiver.
Hence, a separate CAN Transceiver (MCP2551) was added to the
U2 slot on the board.

• The pins PM0 and PM1 are RxD and TxD pins on the micro



Project Description (contd…)

• Loop-back mode Software Setup:
• Software debugging is simplified by putting the HCS12 CAN Module

in “loop-back” mode. In Loop-back mode, no messages are seen
on the bus.

• The register CAN0CTL1 is set to “0xA0” which enables and sets the
CAN module in loop-back mode

• As per convention, the following times are set:

• Synchronization Segment = 1 Time Quanta

• Timing Segment 1 (Prop. + Phase Buffer1) = 11 Time Quanta

• Timing Segment 2 (Phase Buffer2) = 4 Time Quanta

• Thus, CAN0BTR1 = 0x3A



Project Description (contd…)

• Loop-back mode Software Setup (Contd…):
• PreScalar Calculation:

• Prescalar is given by the formula

• We need the baud rate to be 125KHz. Since the Dragon-12 crystal is 8
MHz, fCANCLK = 8M, (1+ Time Segment 1 + Time Segment 2) = 16,
Bit Time = (1/125K)

• Thus Prescalar required = 4

• For this value of Prescalar, we need to set CAN0BTR0 = 0xC3
(assuming Sync Jump width to be 4 Time Quanta)



Project Description (contd…)

• Hardware Setup with 2 Dragon-12:
• Once the loop-back test was successful, we connected the 2

Dragon-12 boards



Project Description (contd…)

• Software Setup with 2 Dragon-12:
• 2 CAN messages with IDs 0x100 and 0x200 are transmitted by

CAN Node#1 and CAN Node#2 respectively.

• The Masked ID and Acceptance filter configuration are as follows:



CAN in HCS12 (Contd…)

• Software Setup with 2 Dragon-12 (Contd…):

• 0x100 is transmitted cyclically every 15ms and 0x200 is transmitted
cyclically every 10ms. We used a Real Time Interrupt for interrupting
every 10ms and 15ms on CAN Node#1 and CAN Node#2 respectively.

• An CAN receive message interrupt (Interrupt 38) is fired on both nodes
when they receive their respective messages.

• The message ID 0x100 carries the value of the variable resistor from
Node#1 and that value is displayed on the LCD on Node#2

• The message ID 0x200 carries the DIP switch status from Node#2 and
its value is displayed on 7-seg display on Node#1

• Only 1 software is flashed on both boards with only the change for
accommodating the ID. This is managed using pre-compile switches
(“#ifdef SECOND_NODE” when flashing on CAN Node#2)



CAN in HCS12 (Contd…)

• Software Setup with 2 Dragon-12 (Contd…):
• 0x100 Message on Logic Analyzer:

• Message 0x100 sent cyclically every 15ms:



CAN in HCS12 (Contd…)

• Software Setup with 2 Dragon-12 (Contd…):
• 0x200 Message on Logic Analyzer:

• 0x200 message sent every 10ms:



• Demonstration

The Demo video has been uploaded at: 
https://www.youtube.com/watch?v=VdNLzp-K8ME&feature=youtu.be 

https://www.youtube.com/watch?v=VdNLzp-K8ME&feature=youtu.be

