
CAN Node using HCS12 

Ketan Kulkarni, Siddharth Dakshindas 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

e-mails: krkulkarni@oakland.edu, spdakshindas@oakland.edu  

 

 

Abstract—The objective of this project is to demonstrate 

CAN capabilities of HCS12.A network of 2 CAN nodes 

will be created using 2 Dragon-12 boards. The MSCAN12 

module will be set at 125 KHz baud rate. Both the boards 

will be communicating on different IDs.  

I. INTRODUCTION 

The controller area network (CAN) has been a robust 
serial communication protocol since the past 3 decades. CAN 
vastly reduces complexity and decreases wiring considerably. 
CAN specifications were later published and most automotive 
micro-controllers now support CAN 2.0A and 2.0B. The 

HCS12 CAN Module provides the following features: 
1. Full implementation of the CAN 2.0A/B 

protocol. 
2. Five receive buffers with FIFO storage scheme. 
3. Three transmit buffers with internal 

prioritization. 
4. Programmable wake-up functionality with 

integrated low-pass filter. 
5. Three low-power modes: sleep, power-down, 

and MSCAN12 enable. 
6. Programmable loopback mode supporting self-

test operation. 
7. Clock source coming from either E-clock or 

oscillator clock. 
8. Internal time for time stamping of received and 

transmitted message. 
9. Global initialization of configuration registers. 

The CAN protocol specifies the lowest two layers of the 
ISO seven-layer model: data link and physical layers. 

 

 
Figure 1 Layered Architecture of CAN 

CAN is a message-based protocol with an identifier 
embedded in each message. The identifier helps the node to 
decide whether it is to receive and process the message. Also, 
in case of 2 messages on the bus at the same time, the identifier 
helps in arbitration. The lower the value of the message 
identifier, higher its priority. 

Since an address is not used in the CAN system, there is 
no need to reconfigure the system whenever a node is added 
to or deleted from a system.  

The CAN specifications use the terms "dominant" bits and 
"recessive" bits where dominant is a logical 0 (actively driven 
to a voltage by the transmitter) and recessive is a logical 1 
(passively returned to a voltage by a resistor). The idle state is 
represented by the recessive level (Logical 1). If one node 
transmits a dominant bit and another node transmits a 
recessive bit then the dominant bit "wins" (a logical AND 
between the two). This is how, it is easy for message 
arbitration mechanism to decide the priority of the messages. 

During arbitration, each transmitting node monitors the 
bus state and compares the received bit with the transmitted 
bit. If a dominant bit is received when a recessive bit is 
transmitted then the node stops transmitting (i.e., it lost 
arbitration). Arbitration is performed during the transmission 
of the identifier field. Each node starting to transmit at the 
same time sends an ID with dominant as binary 0, starting 
from the high bit. As soon as their ID is a larger number (lower 
priority) they will be sending 1 (recessive) and see 0 
(dominant), so they back off. At the end of ID transmission, 
all nodes but one have backed off, and the highest priority 
message gets through unimpeded. 

The CAN messages are transmitted and received in terms 
of frames. Bits in the frame are represent in fields and each 
field has a special function.  

 

 

 
Figure 2 Standard CAN Frame 



The HCS12’s MSCAN12 module supports CAN 2.0A/B. 
It supports standard and extended data frames as well as 
remote frames with a programmable bit rate up to 1 Mbps2. 
The MSCAN12 has a triple transmit buffer scheme which 
allows multiple messages to be set up in advance and achieve 
an optimized performance. Received messages are stored in a 
five stage input FIFO. The module has a configurable 
hardware identifier filter which may be applied to incoming 
messages. A successful transmission or a message reception 
with a matching identifier will be flagged and can generate an 
interrupt request to the CPU.  
 

MSCAN12 block diagram: 

 
Figure 3 MSCAN12 block diagram 

 
An HCS12 member may have up to five CAN modules and each 

CAN module occupies 4 bytes of memory space. The MSCAN 

register organization is shown in Figure below 
 

 
 

II. METHODOLOGY 

A. Setup & test MSCAN12 module in loop back mode: 

Prior to connecting 2 boards together to communicate on 

CAN, the MSCAN12 configuration can be tested in “loop-

back” mode. Since the module is configured in loop back 

mode, the MCU treats its own transmitted message as a 

message received from a remote node. This mode enables 

self-test operation, independent from any physical layer 

implementation. 

The following steps are followed to setup and test 

MSCAN12 module: 

1. Enter Initialization Mode by setting CAN0CTL0 = 

0x01 

2. Set MSCAN in loop back mode by setting CAN0CTL1 

= 0xA0 

3. Setup the sync jump width, TSEG1 and TSEG2 by 

setting the registers CAN0BTR0 and CAN0BTR1 

4. Setup the receiver filters to receive ID 0x100 by setting 

the register CAN0IDAC 

5. Check if the transmit buffer is full (CAN0TFLG) and if 

not full then load the ID in the IDR register 

(CAN0TXIDR0) 

6. Set the Data length, priority and then fill the transmit 

buffer CAN0TFLG 

7. Setup receive message ISR which get triggered when 

message is received. Inside the ISR, receive the data by 

reading the CAN0RXDSR0 register. 

The data that is transmitted from the Tx bus is received in 

the receive buffer. 

We confirmed that the messages that were being transmitted 

were being received at each node. After this, we connected 

the 2 boards together by using 2 wires. 

 

B. Transmitting and receiving data to/from other 

board. 
After successful communication in loop back mode we 

connected the two boards. Now here in this part Board one 
will transmit as well receive data and other board will also 
transmit and receive the data.   For this we have connected two 
boards using wires. (CAN_HI => CAN_HI & CAN_LOW => 
CAN_LOW) 

Now perform the same Initialization for the mode with 
loopback self-test disabled. 
The following steps are followed to setup and test MSCAN12 

module: 

 

1. Enter Initialization Mode by setting CAN0CTL0 = 

0x01 

2. Set MSCAN in loop back mode by setting CAN0CTL1 

= 0x80 

3. Setup the sync jump width, TSEG1 and TSEG2 by 

setting the registers CAN0BTR0 and CAN0BTR1 

4. Setup the receiver filters to receive ID 0x100 by setting 

the register CAN0IDAC 

5. Check if the transmit buffer is full (CAN0TFLG) and if 

not full then load the ID in the IDR register 

(CAN0TXIDR0) 

6. Set the Data length, priority and then fill the transmit 

buffer CAN0TFLG 

7. Setup receive message ISR which get triggered when 

message is received. Inside the ISR, receive the data by 

reading the CAN0RXDSR0 register. 



The data that is transmitted from the Tx bus is received in 

the receive buffer. 

 

The normal mode can be broken up into 3 distinct steps – 

Initialization, Message Reception and Message 

Transmission. Below, the configuration of each register in 

every steps is discussed. 

 

MSCAN Control Registers: 

 

For CAN Initialization: 

 

1) CAN0CTL0 = 0x01;           

// Put MSCAN Module in Initialization Mode 

 
2) CAN0CTL1 = 0x80;  //enable CAN 

 
 

3) CAN0BTR0 = 0xC3;    // Synch Jump = 4 Tq clock 

                                              Cycles, prescalar = 4

 
 

4) CAN0BTR1 = 0x3A; // Set Number of samples per bit, 

                                TSEG1 and TSEG2

 
The bit time is determined by the oscillator frequency, the baud rate 

prescaler, and the number of time quanta (tQ) clock cycles per bit. 

The bit time is given by the following expression: 

 
 

5) CAN0IDAC = 0x10;      // Set four 16-bit Filters 

 
 

 
 
For CAN Reception: 

1) CAN0RFLG = 0xC3;    // Reset Receiver Flags 

 
 

2) CAN0RIER = 0x01;    // Enable Receive Buffer Full  

     Interrupt 

 
 

For CAN Transmission:  

 

7) CAN0TFLG: 

 
 

8) CAN0TBSEL: /* Select lowest empty buffer */ 

 
C. Setup cyclic messages to be sent every 10ms & 

15ms using Real Time Interrupt (RTI): 
CAN messages can be sent cyclically after a fixed interval. 

We decided this interval to be 10ms & 15ms. Thus 2 messages 
with IDs 0x100 and 0x200 will be sent from Board A to Board 
B and Board B to Board A respectively. 

The delay can be generated using the Real Time Interrupt 
(RTI). From calculations, we found out that when RTICTL = 
0x49, for an 8 MHz oscillator, a period of 10.24ms can be 
achieved and RTICTL = 0x4F creates a period of about 15ms. 

When the ISR is executed, the Data length, ID and data is 
transmitted, the Transmit function is invoked thus 
transmitting the messages every 10ms and 15ms 
(approximately). 
 

D. Setup Dynamic values to be sent from both sides 
To achieve the dynamic values in CAN communication 

Board A will transmit value of VARISTOR and it is displayed 
on the LCD of board B. Board B will transmit the status of the 
DIP switch which will be displayed on boards A. Thus 2 
messages with IDs 0x100 and 0x200 will be sent from Board 
A to Board B and Board B to Board A respectively. 

 

III. EXPERIMENTAL SETUP 

In order to be able to drive the bus, the HCS12’s CAN 
TXD and RXD pins are connected to the CAN High-Speed 
CAN Transceiver IC MCP2551 
(http://ww1.microchip.com/downloads/en/DeviceDoc/21667
f.pdf). This has already been done on the Dragon-12 board. 

The RXD is connected to the RXD of the HCS12 which is 
pin PM0 on the board. The TXD is connected to TXD of the 
HCS12 which is pin PM1 on the board. The CANH and 
CANL are the CAN High and CAN Low to drive the bus. The 
RS pin is hardwired to ground. A 5V supply is connected to 
the Vcc of the transceiver. 

 

 
Figure 4 CAN Transceiver Connections 

 
Since the plan is to setup a CAN network of 2 nodes, the 

CANH and CANL of 2 Dragon12 boards are connected as 
shown below. 

http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf


 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 6 Node#1 showing the value of the DIP Switch Status 

 
 
 
 
 
 
 

 

 
 

 

 
Figure 7 Setup showing the display and DIP switches 

 

 

I. RESULTS 

The values sent from each board are correctly displayed on 

other board.  

 

 
Figure 8 Node#2 showing the value which changes with changes in 

Varistor value 

 
 
 
 
 
 
 
 
 
 
 

CANH 

CANL 

Figure 5 Setup with 2 Dragon-12 boards 

Seven Seg Display  

DIP Switch = 0x8E 

Board B 

Board A 

LCD Display 

(Varistor value) 
 



The below figure shows 0x100 Message on Logic 
Analyzer. The identifier field, the 8 bytes of data, CRC and 
other fields are seen. 
 

 
Figure 9 Message 0x100 

 

The below figure shows 0x100 message which is sent every 

15ms. The glitch seen is introduced by the transceiver. 

 

 
Figure 10Message 0x100 sent every 15ms 

 
The below figure shows 0x200 Message on Logic 
Analyzer. The identifier field, the 8 bytes of data, CRC and 
other fields are seen. 

 

 
Figure 11 Message 0x200 

 

The below figure shows 0x200 message which is sent every 

10ms. The glitch seen is introduced by the transceiver. 

 

 
Figure 12Message 0x200 sent every 10ms 

 

Thus it is seen that CAN is a robust protocol which accurately 

transmits and receives data using only 2 lines. It will be used 

for a long time till an even better and cost effective alternative 

is found. 

 

The working of the project can be seen on video at this link: 

https://www.youtube.com/watch?v=VdNLzp-
K8ME&feature=youtu.be 

REFERENCES 

 
[1] The HCS12 - 9S12 - An Introduction to Software and Hardware 

Interfacing 2nd - Huang. 

[2] Wikipedia (http://en.wikipedia.org/wiki/CAN_bus) 

[3] Freescale Documentation 

 

 

CONCLUSIONS 

HCSCAN12 module provides an efficient and optimized 
method to send and receive CAN messages. 
 

 

https://www.youtube.com/watch?v=VdNLzp-K8ME&feature=youtu.be
https://www.youtube.com/watch?v=VdNLzp-K8ME&feature=youtu.be
http://en.wikipedia.org/wiki/CAN_bus

