

Vlad Dragoi, Ryan Bowman,

Rebecca Slota
Electrical and Computer Engineering

Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

Email: vdragoi@oakland.edu,

rmbowman@oakland.edu, rlslota@oakland.edu

Wireless Servo
Project Report

mailto:vdragoi@oakland.edu
mailto:rmbowman@oakland.edu
mailto:rlslota@oakland.edu

1 | P a g e

Table of Contents

1. Introduction………………………………1

2. Methodology....……………...……………2

3. Experimental Step…………..……………3

4. Results…………………………………….4

5. Conclusion……..…………………………4

6. References………………………………...4

I. Introduction

 The objective of this project was to control a

servo through a wireless communication system.

The wireless system utilized two XBee modules to

transmit and receive data through point to point

communication between the Dragon12-Light board

and Arduino Mega 2560. The encoded commands

sent by the Dragon12-Light board are interpreted by

the Arduino. The Arduino uses the commands to

manipulate the servo.

This project covers subjects learned in class

such as utilizing a rangefinder, serial

communication, interrupts, timer modules, and

mixed assembly code. This project also implements

wireless communication using wireless technology.

The applications of this project include the

ability to control motors wirelessly through gesture.

This project could be further developed to apply to

wireless gesture controlled door systems, coffee

makers, toys etc.

2 | P a g e

II. Methodology

Dragon12-Light Board

The Dragon12-Light Board implements an

ultrasonic range finder, HC-SR04, in order to

transmit data across the wireless system. The

ultrasonic range finder is a sensor that detects

distance based on a light transmitter

In order to communicate to the XBee, a logic

level converter was needed to prevent overvoltage on

the RX XBee pin. This is because the XBee runs on

3.3 V, while the rangefinder and Dragon12-Light

Board run on 5 V. The logic level converter allows

data transmission between two different voltage

levels and requires two voltage inputs, as shown in

Figure 1. The XBee data line is connected to the 3.3

V while PM3 is connected to the 5 V on the logic

level converter. PM3 is a general purpose I/O pin on

the Dragon12-LightBoard.

XBee and Arduino

The XBee is used to communicate wirelessly

between the Dragon12-Light board and the Arduino.

The XBee is able to communicate up to 300 ft away.

The XBee on the Dragon12-Light Board is

responsible for transmitting data to the receiving

XBee. The receiving XBee is connected to the

Arduino which is used to manipulate the servo based

on the data transmitted to it.

Figure 2

Figure 1

3 | P a g e

The Arduino manipulates the servo using pulse

position modulation (PPM). This is different from

pulse width modulation (PWM) which modulates the

duty cycle. The servo library for the Arduino utilizes

PPM in order produce servo pulses independent of

the duty cycle determined only by the length of the

pulse [1].

Data was transmitted one byte at a time to the

Arduino, using a baud rate of 9600, and was

observed using the Arduino serial monitor.

III. Experimental Step

Hardware

Hardware used to operate the project includes

two wireless XBee’s. Two Parallax XBee USB

adapters were used to mount the XBee to the

breadboard. The adapters made it easy to interface

between the microcontroller and the XBee. The

adapters included a 3.3 V down voltage regulator,

allowing use of a 5 V source. Two 3.3 V to 5 V logic

level converters were used between the XBee and the

external data line source. To power the

Arduino/XBee circuit, a 3.3 V and 5 V down voltage

regulator were used with two 8 AA battery packs (12

V source).

The servo is powered by the Arduino/XBee

circuit, requiring a 5 V source. The servo data line is

connected to Pin 9 on the Arduino. The ultrasonic

range finder used requires a 5 V source. The ECHO

pin on the range finder is connected to PT6 on the

Dragon12-Light Board and the TRIG pin on the

range finder is connected to PT3.

A limitation of the XBee is one mode can send

one byte at a time, while the other mode can send one

packet at a time. Only one mode can be used at a time.

Software

Software used includes the CodeWarrior IDE,

Arduino software, and XCTU. CodeWarrior is a

development environment that was used to program

the Dragon12-LightBoard. XCTU is software

platform developed by Digi to allow interaction with

the XBee module.

In CodeWarrior, interrupts and timers were used

to capture input from the ultrasonic range finder

(Channel 6). Channel 3 was used as an output

compare in TOGGLE mode. Since it was placed to

capture on rising only, a width variable was

introduced in order to calculate the difference

between the edges on Channel 6. Width is then

converted into centimeters and placed as the distance

variable. The ASM function was then implemented

in order to change the 16-bit distance into 8-bits. The

flipped 8-bits is sent to the PM3 pin, a general

purpose IO pin on the Dragon12-LightBoard.

The Arduino software is a specialized

implementation of C that allows coding for the

Arduino hardware.

IV. Results

The project was able to meet the defined

objective. The Dragon12-Light Board was able to

Figure 3

Figure 4

4 | P a g e

receive information from the ultrasonic rangefinder

and send information over the XBee wireless

system. The Arduino was able to receive

information from the Dragon12-Light Board and

manipulate the servo.

Issues

Issues were encountered when using the

ultrasonic rangefinder, XBee’s, and other hardware.

The rangefinder was highly susceptible to noise

while measuring distance. Since there was no easy

way to resolve this issue, the reading was averaged

over five values. To stop the servo from reacting too

sporadically, a limiter was placed in code to prevent

the difference between the last averaged reading

and the current averaged reading from being too far

apart.

The issue with XBee was interfacing to a

general purpose I/O pin on the Dragon12-Light

Board. Using a general purpose I/O pin proved to be

a large issue, since the least significant bits were

never sent. The loss of data caused inaccuracies in

the data sent to the Arduino to control the servo.

If the project had started with the use of an

actual serial communication port, the design of the

project would have generated more accurate data as

well as allowed more effective control over the

servo. Occasionally, the ground line between the

Arduino and breadboard would be forgotten when

testing the servo. This was remedied fairly quickly

when it was noticed that the servo did not respond

appropriately to the given commands. The ground

was required for the PWM channel on the Arduino

to work appropriately.

The inefficient and often problematic

communications had been unexplainable during the

project and was not noticed early on in the project.

After spending considerable time on error checking,

the discovery was that the general purpose I/O pin

was not sending the least significant bits.

V. Conclusion

The project met the objectives. Given more time

and finances, significant improvements could have

been made. The most important improvement

would have been getting a serial adapter to establish

a serial connection between the Dragon12-

LightBoard and Arduino. Another idea for the

project was to use an LED ring that would change

colors based on the servo’s position. An ultrasonic

rangefinder that was less susceptible to noise would

have improved the project significantly.

Overall, the project accomplished manipulation

of the servo based on a wireless communication

system. The project utilized interrupts, a timer

module, and assembly functions that were learned

in class.

References

[1] B. Evans, Beginning Arduino Programming. New York: Apress,

2011, pp. 156-157.

