
CAN Protocol Implementation

Using the Xilinx Nexys 4 FPGA board

List of Authors (David Guoin, William Couturiaux, Garrett Willobee)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: wlcouturiaux@oakland.edu, dbguoin@oakland.edu, gfwillob@oakland.edu

Abstract—Our goal is to implement a bit

sequence identical to that of the CAN protocol

using VHDL logic and a Nexys 4 FPGA board.

I. INTRODUCTION

The idea behind our project was to program the
logic for the Base Frame Format and CAN protocol
onto an FPGA board Nexys 4 board. We wanted to
then be able to verify the output from our data on
the 7 segment displays and be able to pass 4
different hard-coded messages from our top level
design onto the board depending on the selector
position of switches. If we would had been
successful in completing this we would have tried
to add more functionality to our design in the form
of serial data transmission and more nodes to
communicate within our board. Unfortunately due
to time constraints and project deadlines, we were
unable to meet some of the core functionality
portions of our project within the time frame we
wanted.

II. METHODOLOGY

A. Researching CAN protocol

A large aspect of our project was to research and
understand the CAN format and functionality of a
CAN controller. Controller Area Network (CAN)
is a type of serial communication that includes
many features such as, bit stuffing, arbitration,
cyclic redundancy checking, that allow it to
transmit information to multiple devices while
constantly checking the validity of the information
sent. The message format includes a start bit,
arbitration field, control field, data field, cyclic
redundancy check field, acknowledgement field
and end of frame field. Understanding what each
of these fields are used for was the first step in

creating a design that would allow us to properly
coordinate events, store information and process
information. Starting our research for this project
was immensely helped by our professor, who
provided us with a guide of the CAN protocol for a
controller at the bit by bit sequence level. Any other
research was done outside of this independently
through internet articles and several different
power-point presentations.

B. Define functionality

In hindsight our goals were larger than we
perceived them to be at the start of the project. We
attempted to create a CAN controller that would
possess the following functionality: detection of
start bit within a 0 bit stuffed stream of 1’s, detect
stuffed bits within the message, properly record
each field, check CRC, send a reply message based
of received data field, create a reply message with a
generated CRC value and stuffed bits and display
the data recorded. We started to understand how
large those goals were about mid-way through the
project when we started to really get a grasp on the
logic and the methods we would need to write this
project in the Hardware Description Language. A
lot of time that we spent writing code and logic for
this project was in a way, backtracked because we
would understand previous state machines or
portions only when we had moved onto the next.
This made communication and timing very critical
and difficult to understand.

C. Design approach

 The design process started with the idea of a

top level component that could read an incoming

message. Then looking inside this component

we defined all the lower level components that

would be necessary to get the job done. These

components include a state machine that detects

the start bit, a state machine that “removes” stuff

bits and stores the separate fields into separate

registers, a state machine that handles the

acknowledgement bits, CRC state machine, and

finally a state machine that detects the end of

frame bits. A diagram of this can be seen in

figure 1.

Figure 1, above: Diagram of components used

to read a CAN message.

Once the basic format of the read

component was laid out we began on the state

machines. Creating the state machine that could

detect stuffed bits and load registers was the

most challenging. We began the process with

four separate state machines that would detect

stuffed bits in the individual fields, but realized

that this did not take into consideration the

occurrence of five similar bits between two

adjacent fields. Therefore all the functionality

was incorporated into one state machine that

checked the arbitration through the CRC field for

stuffed bits. After completing this state machine

it made the implementation of new state

machines easier given that they would follow a

very similar format. A diagram of this state

machine can be seen in Figure 2.

After working on the reader portion of the

project we began on a message sending

component. Our project was assumed to only

include one main node that would be

communicating with one other hypothetical

node. Therefore depending on the data field

received we would send a message with a

corresponding data field value. To implement

this functionality we created a decoder that

would supply a data field based on the incoming

data field. This data field would then be sent to

both a CRC generator and a bit stuffing state

machine. A counter was utilized to give the CRC

generator enough time to generate the CRC

given that it was done serially. Because we

assumed the single node the arbitration field

would always be the same, “00000000”.

Although the actual CAN protocol the data field

can range from 8-64 bits, we simplified the data

field to remain a static 8 bits. Therefore the

corresponding control field would always be

“001000”. Finally all these fields were

combined with the acknowledgement field and

the end of frame field, which again would always

remain all 1’s. The bit stuffing state machine

would then utilize a vector that would be large

enough to hold the worst case scenario of stuffed

bits. A diagram of the sender portion of the

project can be seen in figure 3.

Figure 2, above: Diagram of

Arb_control_data_crc state machine.

Figure 3, above: Diagram of message sending

portion of project.

Finally after creating the reader and sender

portions we created a final top level design that

would be able to load a message serially into the

reader which would communicate with the

sender when it was done and then the sender

would generate an output message. The data

saved from the incoming message would be

stored and displayed on two seven segment

displays. A diagram of this can be seen in figure

4.

Figure 4, above: Diagram of top level design.

III. EXPERIMENTAL SETUP

To verify our results, the bulk of our testing was
done through test bench simulations. For every low
level component we created a corresponding test
bench that would simulate several possible
scenarios. This was a very beneficial approach, but
we could see as the complexity of our system
increased our ability to use the test benches to
debug was increasingly difficult. The final test
would then be to download our program on to the
Nexys 4 and observe if the proper data would be
displayed on the seven segment displays.

IV. RESULTS

 We were able to simulate both the message
reader portion and the message sending portion
with good results. We were able to get the proper
data saved into our RAM component; however we
were not able to get the final top level to produce
the proper outgoing message. In hindsight, it seems
that we probably didn’t simulate enough scenarios
for our lower level simulations. Our focus was on
the largest possible bit stuffing scenarios, and
although this was important to test we should have
created more scenarios before moving on to the
next step. We also tried implementing the program
on to the Nexsys 4 board, and although in the
simulation we saved the correct data the board
would not display it correctly.

V. CONCLUSION

 Although we were not able to successfully

produce the results that we set out to achieve, our

success will have to be measured in what we

learned and gained out of the experience. First and

foremost would be an increased understanding of

the CAN format. CAN is such a widespread and

useful format, especially in the automotive

industry. The relevance of the topic to electrical

and computer engineering is obvious, and having a

low level understanding of what is happening can

only be a benefit for our future careers. Secondly

would be an increased understanding of VHDL.

Coding in a group atmosphere can help to speed up

the learning process by observing and talking about

techniques used by others. Third would be the

importance of diligent testing. Not only should a

test bench be created for each component, but a

comprehensive list of scenarios should be

generated so that problems can be debugged sooner

rather than later.

REFERENCES

[1] "can-cia.org," 2001-2015. [Online]. Available:

http://www.can-cia.org/index.php?id=systemdesign-

can-protocol.

[2] "CAN bus," 12 April 2015. [Online]. Available:

http://en.wikipedia.org/wiki/CAN_bus. [Accessed 17

04 2015].

[3] P. D. Llamocca, "Introduction to Controller Area

Network (CAN)," Oakland University, Rochester Hills,

2014.

[4] "Bit stuffing," 18 December 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Bit_stuffing.

[5] "Cyclic redundancy check," 15 April 2015. [Online].

Available:

http://en.wikipedia.org/wiki/Cyclic_redundancy_check.

