
Four-Way Traffic Controller

Implementation

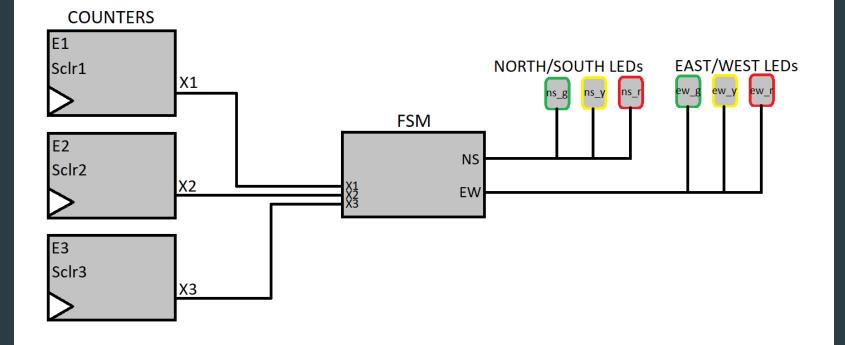
Hardware: Nexys-A7 Board

Programmed In VHDL

Designed and
Developed by Emanuel
Shabo, Nick Legato,
Caleb lott.

Circuit Description & Function

Circuit designed consists of one finite state machine and three counters.


- Each counter component provides a record (memory) of the number of times a previous event occurs. In this circumstance, which LEDs were previously activated. This, too, is in synchronization with the clock.
- The finite state machine (FSM) takes the previous states of the LEDs and determines, from a prior programmed configuration, which LEDs will be activated given input from the counter components.

Function

Overall function is to simulate behavior of a traffic light at a 4-way intersection.

- Includes timing of lights.
- Light reacts to idealized traffic flow: cars stopping, queuing, and moving through the intersection for the given output of the light.

Block Diagram

State	N/S LED Color	E/W LED Color
0	Green	Red
1	Yellow	Red
2	Red	Red
3	Red	Green
4	Red	Yellow

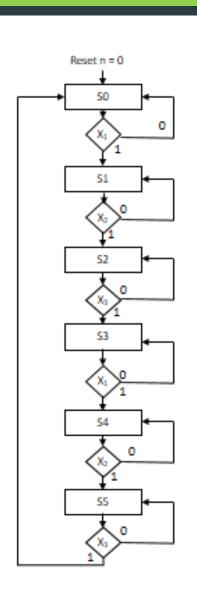
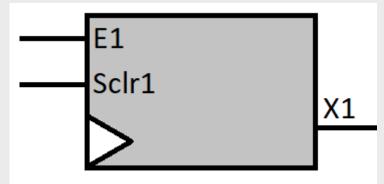

Red

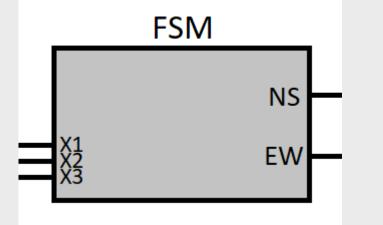
Table 1: Table of each state.


5

Ređ

State Diagram

Counter



Architecture

- Enable (E): Allows the counter to function when it is high (1). Otherwise, nothing will happen.
- Clear (sclr): Makes sure that once a process of the counter is done, it will clear so it doesn't overlap with another counter.
- Clock (clk): Gives the component a way to be on time with the functions.
- Output (C): Once the counter counts, it will output to the FSM.

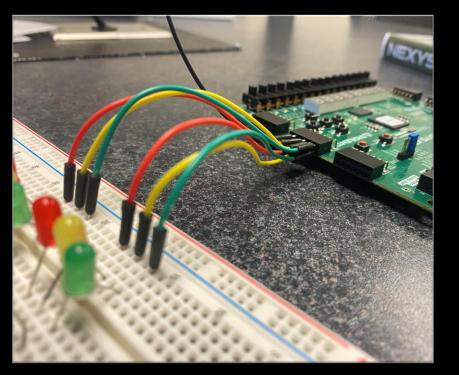
- Reasons for Implementation
 - Needed to make a way to easily change states with timing. It pairs well with the clock.

Finite State Machine

Architecture

- Inputs (x): Connects to each counter. Needs a way to connect each component.
- Outputs (NS & EW): Connects to the two sets of LEDs. LEDs include green, yellow, and red for each set.

- Reasons for Implementation
 - Needed a way to transition between states to change the color of the LEDs in a proper manner. This includes proper timing.


Simulation Results

Name	Value	0.000 ns	100.000 ns	200.000 ns	300.000 ns	400.000 ns
¹⁸ clk1	1	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				
😼 reset	1					
🖁 ns_g	1					
😼 ns_y	0					
<mark>™</mark> ns_r	0					
🔓 ew_g	0					
🖁 ew_y	0					
l⊌ ew_r	1					

ns_g	North-South Green
<mark>ns_y</mark>	North-South Yellow
ns_r	North-South Red
<mark>ew_g</mark>	East-West Green
ew_y	East-West Yellow
ew_r	East-West Red

- > Changes are uniform.
- ▶ Note the clock ticks.
- State 1
 - North-South Green is ON (1).
 - East-West Red is ON (1).
 - All else if OFF (0).

Demonstration Setup

Additional Hardware: Bread Board, Wiring, LEDs, Transistors.

Live Demo

https://www.youtube.com/watch?v=uNnRW8VPhPs