
FPGA Battleship

Subtitle as needed

Jonathan Nguyen, Brian Wills

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: jtnguyen2@oakland.edu, bdwills@oakland.edu

Abstract—The purpose of this project was to attempt to make a

smaller rendition of the popular game “Battleship” out of

VHDL and an old Nexyus-4 DDR board. With the use of

components [1] such as registers, multiplexors, 7-segment

displays, and conceptual circuits such as comparators,

serializers, and a finite state machine (FSM), a digital version of

the game could be built to store ship locations, register hits and

misses, and keep track of player turns and coordinate position.

This report covers the conception of the project design,

methodology, and results that followed.

I. INTRODUCTION

For the Final Project, we decided to recreate the classic
game of Battleship using our field-programmable gate array
(FPGA) boards and the VHDL programming language.

Battleship is a simple two-player game where players take
turns taking “shots” on a coordinate grid in an attempt to sink
the other player’s fleet of ships. The game ends when a
player’s fleet is completely sunk. [2]

The motivation was to create a project of significance that
would be easily understood by all group members. In a
previous class, some group members had heard rumors of
some students recreating classic DOOM for their final project,
and this was born of that idea being discussed, with some
requirements being relaxed to ensure that it can be made. Such
requirement relaxing is related to the number of hits a ship can
receive, how many rulesets the game has, how large the map
and ships themselves are.

II. METHODOLOGY

A. Alterations to Original Game

The game will be based singularly upon the “classic”
interpretation of Battleship, with one player choosing a single
spot on the board per turn to attempt to sink the other player’s
ships. Normally the game board is a ten-by-ten grid[2], but for
the purposes of simplifying the game for this project, the
group decided to drop the size of the board to a seven-by-
seven grid. This was done to shrink both the size of the
amount of data needed to retain due to misses and to simplify
the logic needed to ensure smooth play.

In addition to that, it was decided that each ship would
only occupy a single tile of space rather than have different
ships of different sizes in different orientations. Such logic

was felt to be unnecessarily complicated for the intended
scope of this project.

However, it was agreed that the players would need
something to judge their positions by, and as such the ship
position selected by six (three for each axis) board switches
are displayed on one bank of four 7-Segment LED displays.

B. Gameplay States

A typical game was designed to consist of the following
stages: Reset Screen (S0), Player Ship Position Selection (S1,
S2), Player Turn (S3, S4), Player Selection Error (S6, S7) and
End Game (S5).

As designed, Reset Screen is a resting state for the system
and serves as a visual notice to the players that play has yet to
commence. To exit the reset screen and begin play, they only
need to engage the “load” switch.

Figure 1: State 0, Reset Low State

Figure 2: State 0, Reset High State

Player Position Select is when the players input the

position of their ships, selecting them in ranks of five and
engaging the “load” switch each time to confirm their
selection and loading the data point into the system.

mailto:jtnguyen2@oakland.edu
mailto:bdwills@oakland.edu

Figure 3: State 1, Player 1 Ship Position Selection

When Player One has successfully loaded data into their

given memory registers, the finite state machine automatically
switches over to Player Two, and displays such on the 7-
Segment Display.

Figure 4: State 2: Player 2 Ship Position Selection

Once both player ship position registers are full, the state

advances to the normal turns of play. Examples of which are
provided below.

Figure 5: State 3, Example Player 1 Turn

Figure 6: State 4, Example Player 2 Turn

After Player Two has done the same, the game switches

into the ‘default’ state, or the two states that the game will

reside in for the longest period of time; turns being taken

between both players. This time, rather than have the player

selecting positions for the ship, it is what position to compare

against that of the opponent.

Should either player choose a coordinate that had already

been chosen, the game would enter an error state until the

player entered another position. For this reason, the initial

design called for a VGA visual display to show each player
where they had missed or hit previously, but was deemed too

complex following further study and research. Since the idea

for a VGA display was dropped, the use of a 7-segment

serializer was decided to be the main display resource.

Figure 7: State 5, End Game

Figure 8: State 6, Player 1 Error

Figure 9: State 7, Player 2 Error

C. Controls

As designed, the X and Y coordinates for a given

selection utilize the first six switches on the class board,

iterating upwards in the fashion of a binary counter. The first

three switches are mapped to the X coordinate, and the

second three to the Y coordinate. Switch Fifteen (SW[15]) is

mapped to the reset command, and Switch Fourteen

(SW[14]) is the load command, which triggers the position to

be loaded into a ship position register or compared to the

opposite player’s ship position registers.

D. Components

The following is a list of components that are core pieces

to the final circuit and design of the game.

D1. Registers

Registers were used as storage spaces to store ship

locations for each player as well as a copy of the field grid for

comparison with regards to hits and misses. There were ten,
six-bit registers used for storing ship coordinates split evenly

between the two players. This was made possible due to the

simplification of game rules mentioned earlier. There are two

49-bit registers that are used for both comparing (a

comparator’s function) against and storing (a register’s

function) a 49-bit number that represents the game board,

again one for each player.

D2. Comparator

The main comparator is, like the other two main
circuit components, dual purpose. During the first two states

of play (S1, S2), the comparator functions as a pass through

that occasionally sets off an alarm when a player’s input

signal does not get cleared by a subsequent one soon enough.

This function during these states is ignored by the FSM.

During the second portion of play, the comparator

fulfills the role of determining if a given player has achieved

a ‘hit’, or when their guess has matched with that of the

opposing player. Once the player position registers have been

filled, the FSM switches the ‘fn’ port to digital low, which

changes the functionality of the main comparator.

This function outputs the information from the
player into one of two states. In this next state first variant,

the player’s input is not equal to the opposing player’s ship

position, and is pushed into the demultiplexer between the

two hybrid comparators and then into the appropriate one for

further analysis.

In the second variant of the regular comparator

function, the player’s input is the same as the given value by

the system register, and is recorded as a positive value on

“comp” signal. This iterates a variable in the FSM (ship1 for

Player 1, ship2 for Player 2). Once and only once either of

these variables reaches five does the game shift into the end
game, declaring the game to be over.

D2.1 Hybrid Comparator

The hybrid comparator is called such because it is not

merely a comparator, nor does it compare values in the

manner that would normally befit the name. The hybrid

comparator has the job of comparing a given position on the

board with the positions that are stored in the memory

portion.

To compare the values and ease the computational burden

on the system, it was determined that the best way to describe

the board was with a single, 49-bit binary number as there are
forty-nine places on the board, numbered in the same fashion

as a binary number (0 to 48) to simplify the coding process.

From there, each six-bit number is assigned a numeric value

based upon the figure below, which was transformed into a

large if-statement.
Once the numeric value was established, the module

determined if it’s resident 49-bit number contained a ‘1’ at

that location [miss(b) as it is called in the code]. If there is no

positive logic, then it is swapped to positive and the turn is

over.

If there is already a positive logic at that location within

the number, the hybrid comparator notifies the FSM that

there is a duplicate entry, and the system goes into an error

state until the given player loads a new position into the

system.

Figure 10: Board Layout with Enumeration

D3. Serializer

The serializer component is based off of the VHDL

code given from ECE 2700 notes/website [1]. The main

purpose of the serializer is to cycle through the bank of four

7-segment displays since the FGPA can only turn on one

display at a given time. The main code modifications were

that the displays are tied to the states of the main FSM (not

the small internal one that cycles through the displays) and

the hex-to-7-segment decoder has been modified to display

A-G and 1-7 for the coordinates (ex: A7, G1, F6, etc.) as well
as a “P1” or “P2” set to show which player’s turn it is. As

stated earlier, since the idea of using a VGA display was

dropped, the initial goal was to use all eight 7-segment

displays on the FGPA, but after consideration of what inputs

were being used and what was to be displayed, it was settled

on using only four displays to show player turn and cursor

position for the majority of the gameplay.

D4. Demultiplexer

Used to simplify data flow from major modules.

Each player has a dedicated demultiplexer to enable data flow
from the comparator into each position register. Around the

main comparator there are two demultiplexers, one to direct

data to the player appropriate bank of registers and one to

direct data to the appropriate hybrid comparator/register.

D5. Multiplexers

There are three multiplexers in the circuit. Two are

five-input multiplexers and are used to feed an opposing

player’s ship position data into the main comparator.

However, due to an initial desire to simplify the construction

of each circuit component, a third multiplexer was added

between these five-input MUXs and the comparator to only
allow the appropriate player’s data into the main comparator.

D6. Integrators

There is one integrator in the circuit, right at the

beginning of the data path. This integrator turns the player

input into the corresponding 6-bit vector that is used for the

coordinate position that is used throughout the rest of the

circuit.

D7. Multi-Input OR Gate

This module served as the key input for determining

if the player’s ship registers had been filled up. Each register

has a signal that goes low if the held value is anything but

“000000”. Once each signal has gone low, the signal output

for this module goes low, which informs the FSM to move
along to the next state of play.

D8. FSM (Finite State Machine)

The FSM controlling this project was envisioned

and built as the central authority on what happens and when

in the system. For this reason, it has numerous conditions for

state changes, and each state comes with a slew of different

values for each of its outputs.

One crucial part of the FSM was how to iterate the

mux controller (rmuxc) between two different players, clear

it, and have it ready to go as soon as the state changes without

causing a wrong value to be shunted to the wrong portion of
the system. To solve this, two separate mux values were

created, iterated and cleared asynchronously (muxcs,

muxcs1). From here, the two mux values were given a series

of when statements that culminated in the output of (rmuxc).

Additionally, an issue of having the FSM change

state early arose, leading to the adoption of a process to detect

when a new value was put into the system (pi), and to change

only when such a thing occurred. To this end, the (fsms)

signal was tied into the state change statements to ensure that

only when it was proper time did the FSM allow the system

to change states.
Of course, this was not the only version of this issue

that arose; it was determined after trial and error that having

the mux controller variables go up one value past the number

of ship registers ensured proper timing, for their part. Should

the value be lower, then the state would change well before

the player finished flipping the switch on his or her turn, and

result in a cascade of unauthorized input and calculations

upon entering subsequent states.

In the figure below is a simplified state machine diagram

for the project. Due to the large number of output control

signals in any given state, it was determined to be best to

leave them out of the drawing.

Figure 11: Sketch of System Finite State Machine

III. EXPERIMENTAL SETUP

For the final project, the game was to be implemented on

a Nexys-4 DDR or Nexys A7-50T FGPA board using Vivado

software for coding and simulation purposes. All code was

either created or modified from provided code from the class
website.

For simulation conditions, the time spent simulating was

expanded from the default one thousand nanoseconds to one-

hundred-sixty milliseconds. The time was lengthened

significantly versus normal simulation standards to allow for

more realistic testing of the system. An early solution to the

timing issue between the hybrid comparator and the

multiplexer associated with them was to provide one or both

with a delay in sending or receiving the data.

In the nanoscale environment, such a delay of anywhere

from one to four clock cycles was sufficient enough to

provide stable results. However, once scaled up to a more
realistic time scale, such minor changes were ineffective at

solving the issue, thus necessitating a redesign of the system.

Additionally, due to the large number of digital signals

being tracked at any one-time, custom wave-configuration

files were saved to provide easier access to the data and are

included in the report

IV. RESULTS

The final outcome is best classified as mixed results. While

the code could be simulated, implementation proved

problematic, and therefore was not fully realized. One of the

problems encountered is that there was an error which was

causing signals synchronizing with the wrong player for the

49-bit registers during simulation.

Another issue that came up is that during actual attempts
at implementing the circuit on the FGPA, the circuit would

be stuck on the opening state and would not proceed past the

initial state, even though the circuit would not show such a

thing during simulations. Root cause analysis revealed this

was an error in synchronizing three elements: the button that

enabled the reset (initially tied to CPU RESET pin on the

board), the reset signal value in the individual components,

and the method of iterating the serializer.

On the other hand, most of the components successfully

worked in stand-alone testing and showed correct values

when simulated using a testbench file outside of the noted

above issues.
In addition, one issue that came up quite frequently in

encoding some of the more complex items (FSM, hybrid

comparator) was the fact that certain statements and case

statements could not be used within one another in the given

version of VHDL that Vivado uses by default, the 1995

release. However, such statements were widely supported in

the 2008 release version of VHDL, but the simulation

environment for Vivado does not support the 2008 version.

This limited functionality hampered development, most

clearly seen in the case of the hybrid comparator’s massive

if-elseif statement chain. Something of this magnitude would

normally use a when-statement, but because it was tied into a

clock process, the ‘95 release did not support it.

CONCLUSIONS

In conclusion, while the project was not fully
implemented, it was not a wasted effort. While the
implementation was not perfect, the project was able to
display various game states, display correct coordinates, input
and store ship locations, and simulations showed the circuit
was able to handle correct comparisons for hits and misses.
Our group was able to gain valuable insight into how VHDL
code works and crucial experience with reading and
debugging digital circuits from timing diagrams. Some of the
main issues still left to be fixed are the delayed synchronizing
signals between the hybrid comparator and the FSM as well
as sorting out the FSM internal issues currently plaguing the
current build, as shown below. Once those are fixed and
provided the solutions do not break anything else the overall
project could then be considered complete. For improvements,
one of them would be implementing a VGA display for a more
visually appealing and ease of understanding as well as
providing a better player interface.

REFERENCES

[1] “RECRLab”, Electrical and Computer Engineering
Department, Oakland University
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[2] “Battleship (Game)”, Wikipedia.org

https://en.wikipedia.org/wiki/Battleship_(game)
.

https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://en.wikipedia.org/wiki/Battleship_(game)

P1

S1

Di

En Do

rsetclk

f

ent2

P1

S2

Di

En Do

rsetclk

f

ent2

P1

S3

Di

En Do

rsetclk

ent2

P1

S4

Di

En Do

rsetclk

f

ent2

P1

S5

Di

En Do

rsetclk

f

ent2

5-Input

OR

(6-bit bus)

s2i

s3i

s1i

s4i

s5i

do

5-Input

MUX

(6-bit bus)

s2i

s3i

s1i

s4i

s5i

do

muxc

5-1

Decoder P1

6-bit

s1

s2

s3

s4

s5

muxco

en

P2

S1

Di

En Do

rsetclk

f

ent2

5-Input

OR

(6-bit bus)

s2i

s3i

s1i

s4i

s5i

do

5-Input

MUX

(6-bit bus)

s2i

s3i

s1i

s4i

s5i

do

muxc

Comp

6-Bit

Si Pi

comp dec49

Do

fn

6-49

Decoder

Reg

Pi

sm2

mre

rset clk

Switch Input

choicepos col(1)

col(2)

r(0)

r(2)

col(0)

r(1)

ent

ctrl

ctrl

fn

pctrl

p2xs

p1xs

rmuxc

rmuxc

6-49

Decoder

Reg

Pi

sm

mre

clkrset

ccs

FSM

p1xs rmuxc

p2xs ctrl

sm ent2

sm2 p1den

ent

comp

pi

p2den

mre fn

sv

clk rset

Serializer

position

cllk rset

seg7

AN

hitlight

stat

player

hit

AN (7-seg bank active)

7-seg output

LED

5-1

Decoder P2

6-bit

s1

s2

s3

s4

s5

muxco

en

P2

S2

Di

En Do

rsetclk

f

ent2

P2

S3

Di

En Do

rsetclk

f

ent2

P2

S5

Di

En Do

rsetclk

f

ent2

P2

S4

Di

En Do

rsetclk

f

ent2

sw10

sw11

sw12

sw13

sw14

sw15

sw9

