
Four Way Traffic Lights

ECE 2700 Winter 2021

List of Authors (Justin Akhahon, John Antosh, Faristina Jackson, Daorsa Dulaj)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-Mails: justinakhahon@oakland.edu , jantosh@oakland.edu , ddulaj@oakland.edu , fjackson@oakland.edu

Abstract- In this project, we constructed a
functional traffic signal for a standard
city four-way intersection. The LEDs are
intended to operate at a traffic
intersection assuming traffic is going
north, south, east, and west. We
accomplished this by using VHDL code to
implement our traffic signals, and
programming VHDL code onto a Digilent
Nexys 4 DDR board to verify our design.

I. Introduction

Since the introduction of the first
traffic signal in 1868, traffic signals have
always been used at road intersections to
control the flow of traffic. In today's time
traffic signals have been implemented in
almost every major city around the world,
not only does it control the flow of traffic,
but it protects the commutes of pedestrians
daily by using these specific colors (green,
yellow, and red). Even though it is nearly
impossible to prevent traffic jams from
occurring, we can still innovate ways to
reduce the duration of traffic jams.
Especially those that occur on busy road
intersections. Instead of implementing more
roads that may cause more traffic, we can
innovate our traffic signals to reduce the
duration of traffic. For this project, our team
designed a model traffic signal. This model
will replicate the basic idea of a traffic
signal at an intersection. This project also

involves the use of an integrated circuit with
various components, and a test bench circuit
simulation which will help us examine our
circuit and debug it so it will function
successfully.

II. Methodology
In this project we created a top file

and other corresponding files to support our
system. The top file controls the output of
our system which are two LEDs, one
representing a road along the North/South
direction and the other representing a road
along the East/West direction.

Our first component is the clock
pulse generator which takes the internal
clock signal of our Nexys board as an input
and transforms it into an output signal of 1
every half a second. The next component is
a finite state machine. Our FSM takes in the
clock pulse generator output as an enable
input. In this way, the FSM functions every
0.5 seconds instead of every 10ns. The FSM,
along with an embedded counter, manages
the states of our system. The counter is used
to control how long the states last and the
FSM outputs are used to select which color
the LEDs will have. We created an LED
generator to generate our top file outputs.
This component has the top files Enable as
an input and four outputs that represent each
color the circuit will produce. These outputs
are fed into two multiplexers. These

mailto:justinakhahon@oakland.edu
mailto:jantosh@oakland.edu
mailto:ddulaj@oakland.edu
mailto:fjackson@oakland.edu

multiplexers receive their select input from
our FSM. In this way, the FSM controls
which of the four inputs in each multiplexer
will become outputs. These outputs are then
displayed on the Nexys board as LEDs.

Figure 1 (Block Design)

A. Finite State Machine:
The finite state machine also known

as (FSM) are used to represent systems with
a finite number of states. In our project we
took our input signals of our function and
used that to control our output functions. By
using an FSM we were able to define our
sequential logic for our output signals.

Our FSM has three inputs: Enable,
Disable, and Resetn. The Enable input is
received from the clock pulse generator.
This in essence causes the FSM to either
increment its embedded counter or change
the state when the enable is activated every
0.5 seconds. The Disable input is received
from the top file input and it causes the FSM
to oscillate between the first and seventh
states. This, in conjunction with the rest of
the circuit, was used to emulate the effect of
a blinking red LED. The Resetn input is
received from the top file input and it causes
the FSM to remain in state 1 (solid red
LEDs).

Our FSM has two outputs. Each
output is a set of two binary numbers. These

two sets represent what colors the final LED
outputs should be.
(Green: 10, Red: 01, Yellow: 11, None:00)

Figure 2 (FSM State Diagram)

Pulse Generator:
The pulse generator was used in our

project to generate an output signal of 1
every half a second. With the integration of
“if then” statements our group was able to
implement a counter that increased on every
clock tick. After our counter reached its
limit, the output of the pulse generator
would be 1. This essentially allowed us to
convert an output of 1 every 10ns to an
output of 1 every 0.5 seconds.

Led Generator:
The led generator was used in our project to
generate all our desired led outputs: green,
red, yellow, and none. This component's
only input is Enable. This input controlled
whether the generator would generate the
normal outputs, or if Enable was set to 0, it
would generate "none" for every output.

Multiplexer: We used two multiplexers to
control which color our LEDs would be at
any given time. The inputs from the LED
generator and the select inputs from the
FSM were designed to match. (E.g. if the
select input from the FSM is 10 then the
multiplexer would choose the input 10 from
the LED generator)
Each multiplexer has an output that is
connected to the top file LED output.

Test Bench: Lastly before we uploaded our
program onto our board, we had to test it in
our test bench file to make sure that
everything was working properly. This test
which was carried out in our test bench file
was utilized to amend mistakes that occurred
in our coding process.

III. Experimental Setup

Software: For this project, our group used
VHDL to program our system. This is a
programming language that we have been
taught to use in our ECE 2700 class. Besides
the normal setup, we had to set the
configuration bank voltage to ground and
the configuration voltage to 1.8V to avoid
damaging the circuit.

Hardware: The VHDL code that was used
in this project was constructed on a program
called Vivado. This code was further
programmed onto a Digilent Nexys 4 DDR
board which computed our code. We used
two LEDs on the board as our outputs and
three switches as our Enable, Disable, and
Resetn inputs. The expected results from our
circuit is a functioning, easily identifiable
sequence of lights that represent indications
for traffic flow and multiple switches to set
these lights into either an off state, a
blinking red state, or a solid red state.

IV. Results
After multiple attempts of revising

our code, we successfully got our code to
run correctly on our board. After multiple
group meetings and having limitations of
resources we found it easier to limit our
project scope to having a basic led
behavioral sequence function and then add
on the disable feature afterwards. Our group
had some help with coding by using some
references from Dr. Llamocca. Our group
also was able to implement the use of a

finite state machine as the main driver of the
circuit function. This benefited us greatly for
our project and was an important topic for
the class. Our FSM state diagram was
especially helpful when stepping through
our circuit logic process and debugging
issues.

V. Conclusions

Designing and building a model
traffic signal wasn’t as easy as it appeared.
Iterating through the debugging process was
stressful when it failed, but rewarding when
all the pieces began to come together. This
project helped expand our group's
experience with critical thinking, design,
and VHDL code. We learned the benefit of
using components such as a pulse generator
and a finite state machine. The integration of
these systems helped our project run
smoothly. Even though we went through

many challenges, our group was able to get
a better understanding of the class material
because of this project.

Some improvements that we could
have made are to add more functionality for
traffic lights that usually occur during
different times of the day. We also could
have implemented different time lengths for
intersections that were experiencing heavier
traffic by adding sensors to our project.

Overall, the design functioned as
intended and taught us valuable lessons
about critical thinking, the debugging
process, and working as a group on a design
project.

Reference

[1] Llamocca, Daniel. VHDL Coding for FPGAs,
www.secs.oakland.edu/~llamocca/VHDLforF PGAs.html

