
BCD to Binary Converter
EGR 2700 Final Project

List of Authors (Christopher MacKenzie, Haojia Sun, Joel Fazecas, Jimmy Yousif)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: cmackenzie2@oakland.edu, haojiasun@oakland.edu, joelfazecas@oakland.edu, jimmyyousif@oakland.edu

Abstract- This project uses Digilent Nexys 50T
equipment to realize the conversion from BCD code to
binary with the use of a keyboard. The BCD input is
realized by the input of the keyboard, and displayed on
the 8 7-segment displays. Finally the conversion result
will be shown on the display. This project familiarizes
those designing it with the method and process of using
FPGA boards for digital electronic system design and
development. This project also provides experience for
further research in the future. This project can be
expanded to output the result to an LCD interface and
could allow the use of external keyboards as BCD code
input in the future.

I. INTRODUCTION

This report will cover the final status of this project. The
methodology section will cover a highly detailed Block
diagram along with the internal components of which. The
methodology section will also cover the current state of the
development of VHDL code for the system.

The project is a BCD to Binary converter. The motivation
was to create a project that will convert a user inputted BCD
from an external device into a Binary output. The project
utilizes a keyboard for the input method to generate a BCD
input.

The motivation for this project is to create a simple to
use physical BCD to Binary calculator. This could be useful
for anyone that often does these conversions or for someone
who is learning about these concepts. This project covers
multiple topics covered in this course such as; the
calculations and concepts used to convert these number
systems between each other, and structural implementation
of a system in VHDL. The topics not learned during this
course that is pursued in this project is the implementation
of an external usb keyboard as well as multiplexing of data
to be displayed on all sections of a seven segment display.

II. METHODOLOGY

[Figure 1]

A. Keyboard Implementation

The project is represented in the Block Diagram
displayed above. A user will generate an 8-bit BCD number
by inputting 1’s and 0’s into a usb keyboard. The keyboard
is connected directly to the usb port on the Nexys board. A
PS/2 keyboard will output data each time a key is pressed
and released. This data is represented on the diagram as
PS2C and PS2D. This data consists of 11 bits. Two bits are
start and stop bits, and one bit is a parity bit. The remaining
8 bits are the data. As seen in the diagram, the Keyboard
driver component takes this data and converts it into BCD.
This keyboard driver is composed of three major
components. These components can be seen in figure 1
above. These components are the keyboard reader, the
keyboard decoder, and a left shift register. The keyboard
reader component is composed of 4 components itself and
will be described below. The keyboard decoder takes the
output from the keyboard reader (DOUT) and converts the
data to a one or a zero. This is because the user inputs either
a one or a zero from the keyboard. The DOUT from the
keyboard reader is the stripped down 8 bits of data from the
keyboard itself. This data is read by the decoder and
depending on what the data is, a 1 or a 0 will be produced.
This output from the decoder is inputted into the Din input
of a left shift register. The enable pin of the shift register is
tied to the “done” output of the keyboard reader. This allows

the register to only shift in values from the decoder when
the keyboard reader is done grabbing a key press from the
keyboard. The shift register outputs the current value held as
“x”, this x value is the current BCD input.

[Figure 2]
The last component in the keyboard driver is the

keyboard reader. The keyboard driver in this project is
sourced from Professor Daniel Llamocca’s free VHDL
coding resource website. [1] The keyboard reader, as seen
above in figure 2, is composed of 4 different parts. The PS/2
reader reads the data in from the keyboard and outputs 10
bits (dout10). This output is fed into the finite state machine
(FSM) as well as the shift register. The finite state machine
waits for conditions to be met and outputs a signal Er, this
signal acts as an enable for the shift register as well as the
data input for the D-type flip flop. Other connections can be
seen in the figure above and workings of these components
can be explored in the VHDL code for each component.
Finally, the shift register outputs its current value as DOUT.
DOUT then passes through the previously explained
components in the keyboard driver module, and an 8 bit
BCD value is outputted (x).

B. BCD to Binary Computation

The BCD to Binary component in this project is
done completely through manipulation of data through
VHDL coding. This manipulation is based on a property of
the conversion to binary from BCD. This property is that if
the inputted BCD is broken down into two nibbles (4 bit
groups), then a specific binary arithmetic operation will
convert to binary. This is best visualized by observing the
VHDL code itself.

[Figure 3]
Figure 3 above shows the implemented code for the BCD to
binary converter. Firstly, the inputted BCD value is split into
two 8 bit bytes (bcd1 and bcd0). The first 4 bits of each
byte are set to 0. bcd1, which contains the first 4 bits of the
original BCD input, is multiplied by 10. This new byte is
stored as temp5. This new byte is then added to the second
byte (bcd0). The calculated value of this is the final binary
output (y). This stems off a property of the conversion from
BCD to binary as explored by the website Electrical
Engineering 123. [2]

C. Seven Segment Decoder/Multiplex

[Figure 4]

Figure 4 shown above shows the expanded view of
the Seven Segment Decoder and Multiplexer. This module
works by switching through the different anodes of the 7
segment display as well as switching through the values of
each bit to be displayed. These are both done
simultaneously to allow the display to show each value in its
corresponding position fast enough that the human eye can
perceive each display as being on concurrently.

The first component in this module is the clock
divider. The clock divider is needed to slow the system
clock to a usable level for this circuit. The clock divider
takes in the system clock and reduces the frequency from
100 Mhz to 25 Mhz. This is done through signal
manipulation with VHDL coding. The clock divider is
necessary in this circuit because switching these values at

100 Mhz is too fast and reduces the on-time for each
position to such a small interval, that they are not bright
enough to be seen. This adjusted clock is then fed into a
zero to eight counter. The counter outputs a three bit signal
which has 8 possible values. The counter increases the
current output by 1 for each rising clock edge. The output
from this counter is then fed into the select input of the eight
to one Demux and the select input of the one to eight Mux.
This forces these two Muxs to switch their outputs as the
counter counts. The input for the eight to one Demux is the
anode values for each position on the display. The input for
the one to eight Mux is the individual bits of the binary
input. The most significant bit corresponds to the input
anode signal of the left most display position. This
switching of display positions and input values is known as
serialization of a display and is explored in the website
FPGA 4 student. [3]

[Figure 5]

[Figure 6]

Figure 5 and 6 show the VHDL implementation of the 8 to 1
demultiplexer and the 1 to 8 Multiplexer respectively.

[Figure 7]

The final component within the 7 segment decoder
and multiplexer is the seven segment decoder. The input for
the decoder is the selected value from the 1 to 8 Mux. The
decoder takes this value and sets the value of R to the
corresponding positions on a seven segment display position
to display either a one or a zero. The VHDL code to
implement this is displayed above in figure 7.

III. EXPERIMENTAL SETUP

The experimental setup of this system was utilized
through the program Vivado 2019.2. The components
needed to complete this project are a Digilent’s Nexys 50T
development board with USB A to B-micro cables, and a
PC or laptop equipped with Vivado.

Vivado simulation was used to confirm the
functionality of components that do not rely on the input
from the keyboard. The BCD to binary component was
tested by setting up a test bench file to input a
predetermined BCD value and the binary output was
observed. The seven segment decoder/multiplexer was the
majority of the simulated experiments. Testing for the
necessary clock speed was implemented. Testing for the
switching of the multiplexers was also performed. This
allowed for these components to be verified as functional.

The testing of the whole project was done with
implementation on the hardware itself. This was done so the
input from the keyboard could be tested. The first test that
was conducted was the test to verify the correct decoding of
the input from the keyboard. The values within the left shift
register (x) were bound to the LEDs present on the Nexys
A7 board. This gave a visual representation of how the
driver was decoding inputs. The next major hardware testing
setup was the simple switching of the seven segment
display. After designing the seven segment decoder and
multiplexer, sample values were placed into the inputs of the
multiplexers. This allowed a visual representation of how
the circuit would switch through anodes and if the timing of
the switching was correct.

[Figure 8]
Figure 8 shows the complete list of components

implemented in this project. This shows the structural
design of the project as it was simulated and as it was
implemented onto the board.

IV. RESULTS

Overall this project functioned as it was initially
designed to. The user of the interface inputs 8 bits of BCD
through the keyboard and the circuit correctly decodes this
input into binary. This binary output is displayed onto the
seven segment display. Many issues were encountered and
changes to the design were made to come to this result. The
first major change was the addition of the keyboard
interface entirely. Originally it was planned to use the
switch inputs on the board as the BCD input. This had to be
changed as it did not fit the requirements of the project. This
caused many issues and created much more work to be
done. At this point the project was reimagined and the
keyboard driver was added. As this was implemented,
things started to come together for the project. At this point
the simulation of the computation was finalized. The first
major achievement or result was the correct use of the
keyboard reader program. When the correct BCD was
displayed on the corresponding LEDs, major progress had
been made and the project would continue smoothly from
this point. The next major result in this project was the
correct implementation of the seven segment multiplexer.
This was a new concept for our group to overcome. The
rapid switching of anodes to display more than one digit on
the seven segment display was something that we had never
done. Research was conducted to solve this issue. With

some experimentation, the issue was solved. The final major
result in this project was the combination of all the working
parts into one top file. There were issues that arose when
combining all the components. These issues were due to
different variable names when creating each component.
This was solved by mapping out the connections on a rough
schematic drawing. This allowed the port mapping in the
final top file to be checked. When the connections were
finalized and verified to be correct, the system worked as
predicted. Finally the results showed the achievements of
this project.

CONCLUSIONS

After doing lots of research and running into many
issues we had finally drawn out our conclusion. One of the
issues that are rarely brought up is the compatible interface.
The implementation of a keyboard may seem like a simple
issue, but many components and setup is necessary to get
this functional. Our first issue we had was using an RGB
keyboard and not using a standard usb keyboard on the
Nexys board. After extensive research we concluded that
most keyboards that use multiple usb inputs seem to have
issues. In the end converting to binary from BCD was a
success when inputting from a standard usb keyboard to the
Nexys board. This project was a fantastic learning
experience for those involved. This project started from a
base idea and progressed through all steps of developing a
system. This is the first time we have done all of these
activities learned in class in the correct order. Overall this
project was a great success and was enjoyable to complete.

REFERENCES

[1] Llamocca, Daniel. Reconfigurable Computing Research
Laboratory, Oakland University. Accessed 16 Apr. 2021.

[2] Electrical Engineering 123,
electricalengineering123.com/bcd-decimal-binary-binary-decimal-
conversion-methods/. Accessed 16 Apr. 2021.

[3] FPGA 4 Student,
www.fpga4student.com/2017/09/vhdl-code-for-seven-segment-dis
play.html. Accessed 16 Apr. 2021.

