
Four-way Traffic Control

Isabella Bodmer, Solana Brown, Brikena Dulaj, Dalena Vu
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

Emails: ibodmer@oakland.edu, solanabrown@oakland.edu, brikenadulaj@oakland.edu, dvu@oakland.edu

Abstract -- Four-way traffic control circuit replicated
with VHDL and breadboard wiring with LED. The
main components of the circuit include FSM, counter,
and decoder. We had initially run into several errors.
However, we were able to complete the circuit, and it
had worked as desired with the simulation and through
the breadboard circuitry.

I. INTRODUCTION
For this project, we had decided to replicate

a four-way traffic control system, using both VHDL
and a breadboard wired to our FPGA boards to copy
the LEDs we intend on using in place of the traffic
lights. Our project’s goal was to successfully emulate
a four-way traffic control system using a finite state
machine (FSM) and a proper LED setup as its main
components and focus. For this project, we had used
our prior knowledge of wiring breadboards and LEDs
from previous classes. However, some challenges we
had encountered were connecting the breadboard to
our FPGA boards, altering the constraints file to
control the breadboard remotely, and wire our system
to be fully functional on its independent clock
determined by the counter.

II. METHODOLOGY
A. Overview

Our project’s intended way to work is to
replicate how a real-life four-way traffic light would
function. Our states include each cardinal direction,
North, East, South, and West. We set up our circuit to
run using a counter, finite state machine (FSM), and a
decoder. The counter slows down the FPGAs internal
clock to ensure our lights are left on for a reasonable
amount of time, not just flashing and undetectable to
the eye. The FSM is used to determine which state
the circuit is at, which is then fed into a 3 to 12
decoder, which interprets the state and outputs the
corresponding LED sequence deciding what LEDs
are on and how long.

Our circuit is off until a switch representing
enable is flipped. It starts with all light signals being
red, while North and South states coincide with each
other and West and East states coincide. We then
have our North and South states be set to green light
signals for ten seconds, all while West and East
remain red. After those ten seconds, the North and
South states then change the light signal to yellow for
five seconds, then all lights turn back to red once
those five seconds have passed, functioning similarly

to a reset. For that state, all lights will remain red for
three seconds. Then the West and East states will then
follow the exact timing and process as the North and
South states previously, with the green light being on
for ten seconds, yellow for five seconds, and then
finally turning back to red.

B. FSM
The timing and settings for the lights are

based on which state the device is in, making the
FSM the central part of our design. To begin
designing our FSM, we started by creating an
algorithmic state machine (ASM) and a state table.
Our ASM shows how our FSM should be behaving
and what the outputs for each state should be.

Figure 1. Algorithmic State Machine (ASM)

For our state diagram, we had all agreed on
having seven states. It uses a switch representing
enable as its input. If the switch is off, all lights are
off, and it is on S0. If the enable switch is on, the
circuit will progress through the states cycling from
S1 to S6, back to S1 after a cycle is completed.

mailto:ibodmer@oakland.edu
mailto:solanabrown@oakland.edu
mailto:brikenadulaj@oakland.edu
mailto:dvu@oakland.edu

Four-way Traffic Control

Isabella Bodmer, Solana Brown, Brikena Dulaj, Dalena Vu
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

Emails: ibodmer@oakland.edu, solanabrown@oakland.edu, brikenadulaj@oakland.edu, dvu@oakland.edu

N E S W

S0

3s S1 R R R R

10s S2 G R G R

5s S3 Y R Y R

3s S4 R R R R

10s S5 R G R G

5s S6 R Y R Y.
Figure 2. State table

Our state table goes further in-depth with
each state’s duration and shows one complete cycle
of our circuit in “chronological” order. We then
created the FSM code to run on our designated
process between each state from this state table. The
cycle illustrates the output in each case.

Figure 3. Part one of the FSM code

Figure 4. Part two of the FSM code

C. Counter
The counter intends to slow down the

internal clock signal from nanoseconds to seconds.
The clock signal will be fed into the counter first, and
the counter’s output is a slower clock signal that will
be fed into the FSM, and then from that point used as
that standard measurement of time. We decided to use
a six-bit BCD counter [3] initially but then increased
the number of bits according to what the output
would be in seconds. Since the default clock is
100MHz, this counter’s default time would be
nanoseconds that were too fast for us to see a
difference. The output Q from the counter then goes
into the FSM to signal the current state’s duration.
While Q could have been left in BCD, we agreed that
converting it to an integer using the formula (2^n)-1
would be easier to implement.

Figure 5. Counter code

mailto:ibodmer@oakland.edu
mailto:solanabrown@oakland.edu
mailto:brikenadulaj@oakland.edu
mailto:dvu@oakland.edu

Four-way Traffic Control

Isabella Bodmer, Solana Brown, Brikena Dulaj, Dalena Vu
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

Emails: ibodmer@oakland.edu, solanabrown@oakland.edu, brikenadulaj@oakland.edu, dvu@oakland.edu

D. Decoder
We decided to use five addresses

representing each state embedded into the decoder
[3]. Each address will be twelve bits, while each
four-bit segment was assigned a LED color, the first
four bits being green, then yellow, and then red. Each
bit was designated as North, South, East, and West
from most to least significant bit. This pattern was
repeated for each four-bit segment. When the FSM
would output the value corresponding to the state it is
in, that value would then feed into the decoder, grab
the respective address, and output it so that the 12-bit
value can be sent to the LEDs.

Figure 6. Decoder code

E. Top File
For the top file, we implement the

components of the decoder, FSM, and counter. We
port mapped all of the included signals, inputs, and
outputs for each respective component.

Figure 7. Final Block Diagram

Figure 8. Top file code

III. EXPERIMENTAL SETUP
Once the code for each module was

completed, the next step was to determine how to get
the FPGA output values to interface with our LEDs.
We chose to use an external breadboard with 12
LEDs to represent the traffic lights, requiring
additional research. After looking at the manual for
the Nexys A7, we decided to use the JA and JB pins
to interface to the breadboard [1]. The top half of the
board was grounded through the JA ground port, and
the lights on the top half were then wired to JA pins
1-4 and 7-8. Meanwhile, the bottom half of the board
was grounded through the JB ground port, and the
lights on the bottom half were wired to JB pins 1-4
and 7-8 [1]. The constraint file was then altered to
reflect those connections.

Figure 9. Simulated breadboard setup

The testbench is used to simulate that the
codes are functioning as expected. The clock and
reset signals are generated in the process statement
for this combination circuit. We process the reset
signal as one initially, then set it to 0 for the next
clock cycle and the following input signals; therefore,
the signal is active high.

mailto:ibodmer@oakland.edu
mailto:solanabrown@oakland.edu
mailto:brikenadulaj@oakland.edu
mailto:dvu@oakland.edu

Four-way Traffic Control

Isabella Bodmer, Solana Brown, Brikena Dulaj, Dalena Vu
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

Emails: ibodmer@oakland.edu, solanabrown@oakland.edu, brikenadulaj@oakland.edu, dvu@oakland.edu

Figure 10. Part one of the testbench code

Figure 11. Part two of the testbench code

IV. RESULTS
Initially, our results were shown as expected

in the simulation of Vivado. Still, when we generated
the bitstream for our circuit and programmed the

board, the circuit did not behave as expected.
Initially, we could not figure out why the simulation
was correct, but the breadboard would not output the
right states or time for the LEDs. However, we later
found that once we allotted more time for the
simulation to run in the console, the circuit worked as
expected. Each LED was lit for the exact time as
initially intended, and the circuit cycled as it should
have. A link for a demo of our circuit is provided
with the link below [2].

V. CONCLUSIONS
We believe that many of the takeaways we

had from this project are to be flexible and open to
change and adapt to our situation. Overall, this
project was incredibly difficult for all of us. We often
kept running into problems early on in the project and
kept changing our plans and scraping our original
ideas. It was incredibly frustrating, primarily since
we had worked so hard on the project, and it often
felt we were at our wit’s end. However, after some
final tweaking with the time and console, we could
correctly program our circuit, and the LEDs worked
perfectly. We had learned a lot through this project,
specifically about FSMs and using different clock
signals for a circuit that runs independently of the
program’s time. Our prior knowledge of a four-way
traffic light that we had gone over in class proved
very helpful, even though we used a completely
different methodology.

References

[1] Brown, Arthur. “Nexys A7 Reference Manual.”
Nexys A7 Reference Manual - Digilent Reference,
reference.digilentinc.com/reference/programmable-logic/ne
xys-a7/reference-manual.

[2]
https://linksharing.samsungcloud.com/qELnwCAHSxzO

[3] Llamocca, Daniel. VHDL Coding for FPGAs,
Oakland SECS,
www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

mailto:ibodmer@oakland.edu
mailto:solanabrown@oakland.edu
mailto:brikenadulaj@oakland.edu
mailto:dvu@oakland.edu
https://linksharing.samsungcloud.com/qELnwCAHSxzO

