
Digital Stopwatch

ECE 2700 Final Project-Implemented in Vivado using VHDL

George Abouzeid, Lislie McHugh, Matthew Schodowski, Marissa Toma

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

gabouzeid@oakland.edu, lmchugh@oakland.edu, schodowski@oakland.edu, marissatoma@oakland.edu

Abstract—The objective behind this project is to design a fully

functioning and effective digital stopwatch onto a FPGA board

using every seven-segment display and featuring key

specifications. Each seven-segment display is operated by a

designated counter. This counter’s count, or output bits every

increment, is converted into a configuration which will light up

the LEDs on the display to visualize that desired number. A

random access memory emulator is used to control the lap

feature. Through the use of registers and a Finite State Machine,

each component of the design can piece together to complete the

desired count. Each of the fundamental components worked

perfectly to combine different aspects of digital logic design in

order to implement the stopwatch. It was observed that the use

of a random access memory(RAM) emulator proves more useful

than initially expected. The project could have been improved

by adding more laps, given additional registers were added, or

researching a more efficient method for creating the laps.

I. INTRODUCTION

This project details an extensive design and
implementation of a digital stopwatch with provided lap
functionality. Given the process of designing this project, the
required components, various results, and decisive
conclusions will be explained or demonstrated.

 The purpose of this project is to create a digital stopwatch
with various features using VHDL. The stopwatch will have
start, stop, reset and lap features. Eight 7-segment displays
will be utilized on a Nexys-4 field-programmable gate array
(FPGA).

The desire behind this project is to get more depth into
how the clock functionality is implemented using FPGAs and
to observe how registers can store and eventually display
desired outputs. The stopwatch will utilize Finite State
Machines (FSM), counters, registers, and a seven-segment
serializer, which involves a variety of sub-components as
well. A basic background of VHDL along with port mapping
and generic mapping can be used to complete most of the
applications required in this stopwatch.

A stopwatch can be used in everyday activities for tracking
the count or certain timing of an action. Stopwatches are
mainly found in phones, wristwatches, or specific training
type clocks found in some sports training. Some of the
challenges posed that will be encountered during this project
include implementing a proper method for storing and
displaying required laps, and creating a stopwatch adequately
visible, time-wise, given a common anode setup for the
displays within the board.

II. METHODOLOGY

A. Top File

For the purposes of this design, a datapath circuit and a
FSM can be used to create the entirety of the stopwatch. The
top file can be broken down into three main components,
which can be utilized of create a top file implementation. The
inputs consisted of a pause switch, a reset button, two address
switches, a store lap switch, and a show lap switch. Each
register, counter, and FSM in this design is controlled by the
same clock and resetn signal. Those on-board switched
corresponded to a few substructures within the design. The
pause switch is vital for being able to control the overall count
on the visible display, while the address switched are able to
choose which register the current lap is stored to. The store
and show lap inputs toggle a current lap into a register and
displays the lap, respectively. Overall outputs of the stopwatch
simply consisted of the common anode control on the seven-
segment displays as well as the converted data fed into each
display accordingly. The three components, counting element,
lapping, and serializer, each serve to maintain a continuous
flow of the count or enable the ability to store a lap. The top
level block diagram is shown below in Figure 1.

 Figure 1 – Complete Block Diagram

B. Counting

While this digital stopwatch utilizes a total of ten counters,
the counting function itself is implemented through the use of
nine modulus counters. With a total of eight seven-segment
displays, the maximum time that can be displayed is 99 hours
59 minutes 59 seconds and 99 hundredths of a second. One
modulus counter will be directly responsible for producing the

increments of the stopwatch. Since the Nexys A7 has a built-
in clock of 100MHz – or a 10ns period – this counter is used
to adjust the 10ns to the correct stopwatch increment of one-
hundredth of a second (0.01s) [1].

To effectively account for the maximum digits that can be
counted, two types of modulus counters are utilized: six BCD
counters and two modulo-6 counters. The BCD counters will
serve to count from zero to nine. On the contrary, the modulo-
6 counters will serve to count from zero to five. This is due to
the nature of time, since a stopwatch increases from 59.99
seconds to a minute, and similarly at the hour mark. In other
words, when a specific counter reaches its maximum count,
the next counter is directly affected. Therefore, the tens place
for minutes and seconds will utilize a modulo-6 counter, while
the rest will utilize a BCD counter. The given input for this
part of the stopwatch will be a designated start/stop switch.
For simplicity, this input can be seen as the pause input. For
each counter to increment correctly, the initial counter will
control the enable of the smallest countable increment. In this
case, the smallest count is 0.01 second, so the controlling
modulus counter will thus have a count up to that of 106 to
achieve this desired timing.

Whenever the pause switch is activated or switched to
high, the controller counter must cease counting to stop the
entire stopwatch at that exact time. To obtain this desired
effect, a not gate is inserted before the enable of the
controlling counter so that when the pause switch is active
high, each counter ceases its count. An output from the
controller counter, called z for most generic counters, is
connected to the system’s first BCD counter as its enable. This
z signal coming from the 0.01 second counter will contain a
very short pulse every time the counter reaches its highest
count. So the first counter after the controller will only
increment with the count of the controller. Every other
moment, its enable will be low. This concept is how every
counter increments properly based on which segment of the
stopwatch it should be counting for.

Naturally, it would seem as though the output of the first
stopwatch counter will feed into the enable of the next
counter, or the counter holding .10 place’s value. This is
partially true because each subsequent counter requires the
outputs of the previous two counters to know if it has reached
a point to increment the count. Each subsequent counter will
have its enable controlled by the AND operation between the
previous counter’s z pulse and its enable. This will maintain
the proper counting design and ensure the stopwatch freezes
the count when the stop switch eventually goes high. In
summary, the following counter’s enable is controlled by the
previous counter’s enable ANDed with the previous z pulse.
With each of the counters working and incrementing properly,
their separate outputs can be fed into the remaining
components to combine the entire design. A separate 32 bit
bus, combining all the output bits from each counter, will head
to the RAM emulator. The counting component is seen in
Figure 2.

 Figure 2 – Diagram of Counting Component

C. Lap Function with Random Access Memory Emulator

A unique feature of this stopwatch will be the lap

functionality. The idea behind this is that, for however many

laps, a certain elapsed time will be held in the “memory” until

requested or used at a later time. This concept will be

designed into the stopwatch using a few ideas learned

throughout the course. For this stopwatch, four different lap

inputs will be available to be stored and displayed as needed.

To implement this function, a general concept of a random

access memory emulator is used [2]. In this design, four 32

bit registers are used to each hold a single lap. This provides

a total of four laps during the use of the stopwatch. The input

data into each register originates from the 32 bits which are

combined from the eight counters in the previous section.

The RAM emulator begins with a decoder containing the

address inputs as the main data and the store lap input as the

enable of the decoder. The address is able to be controlled by

switch 2 and 3 on the board, which corresponds to two bits,

since two bits can represent the four different registers. A

decoder works to create a single high bit, depending on the

input data, in a respective bit position on the output into

which it is feeding. For example, when the address is set to

01, the decoder output 0010 since the desired bit position in

this case is one. Each register enable is controlled by this

decoder to achieve the desired store behavior into whichever

register is chosen. The address bits essentially selects which

register the lap will be stored to through the use of this

decoder. However, when the store lap switch is low, the

enable of the decoder will be low and output zeroes to each

enable of the registers.

In order to write the 32 bit data into the register, the store

lap switch must be switched high then low. When the store

lap is high, the data is constantly flowing into whichever

register is currently selected and the lap count is not yet

captured by the register. It is not until the store lap switch is

back to low until the register writes and maintains this lap

until either reset or given a new data.

The outputs of the four registers are fed into a four to one

multiplexor. The select line of this multiplexor is controlled

by the same two address bits that feed into the decoder. This

is so that, when a register is chosen based on its address, the

output of that register will also be selected by the multiplexor

and serve as the output of the RAM emulator. While the

RAM component usually has an enabled controlled

multiplexor, this can be avoided since the serializer will be

able to choose if the data coming from the RAM is purposeful

or not. The decoder, registers, and multiplexor all create the

RAM which controls the lap function at all times. The RAM

is shown in Figure 3.

Figure 3 – Random Access Memory Emulator Diagram

D. FPGA Displays

All the seven-segment displays on board the Nexys A7-

50T FPGA board will be used during this project to display

the stopwatch timing. Due to the connections made on FPGA,

each of the seven-segment displays cannot be turned on

individually using a common anode method for each display.

Instead, they are all connected using the same input, and if

wanting to display different data on each display, an

alternative method must be used. A trick to solve this problem

would be to turn on the display individually, with all the

others disabled, for a very short period with the desired data

feeding into that display. It happens that the consensus for

this amount of time should be one millisecond [1]. Because

the display refreshes at such short time, to the human eye, it

will have the same effect of all the displays being on

simultaneously and show the expected outcome on all of the

seven-segment displays. It is now a matter of figuring out

how to turn on each of the displays at the right time, and

feeding the right input into those displays in the same time

interval.

E. 7-Segment Serializer

Given the problem encounter in the previous section, a

seven-segment serializer does exactly what is required, with

the components contained within it, to solve the issue [3]. The

serializer is composed of a multiplexor, a counter, a Finite

State Machine, and two decoders. Using the anode input of

each display, we can control which one is enabled while the

rest are disable. An eight-to-one multiplexor can usually be

used to decide which four bits of data will be displayed.

However, this is for the case with a stopwatch without the

laps. Instead, two eight-to-one multiplexors can be

implemented, alongside a separate two-to-one multiplexor.

The bits that originate from the counters at the start of this

design, with their output of four bits, feed into one of the

eight-to one MUX inputs. This MUX will feed directly into

one as one of the inputs for the two-to-one MUX. For the

other eight-to-one MUX, the inputs in this case will coincide

with the 32 output bits from the RAM lapping component.

Here, the 32 bits are broken apart into 4 bit components. The

four least significant bits act as the first input into the MUX

and this dividing of bits continues up until the last input of

the MUX. The 32 bit bus is broken apart into eight four bit

buses so that the MUX can select between the counter bits

just as the other eight-to-one MUX. This output feeds into the

other input of the two-to-one MUX. The select of both of the

eight-to one- MUX will be controlled by the finite state

machine to properly decide which of the eight data

connections are allowed through.

After feeding into the two-to-one MUX, the show lap

switch will act as the select in this case before encountering

the main conversions of the serializer. When the show lap

switch is low, the two-to-one MUX will continue to display

the data coming from the main counters, and the stopwatch

will run smoothly the entire time this switch is low. When

changed to high, the MUX will instead allow the data coming

from the RAM to pass into the serializer. So only when the

show lap switch is high, the laps for any of the registers can

be seen, as the stopwatch displays the lap time. If the

stopwatch is not paused, it will continue to count in the

background, regardless how long the lap is shown. The output

of the two-to-one MUX will then feed into a BCD to seven-

segment display decoder in order to convert the bits into a

desired active low configuration for each distinct LED on the

display to light up the right number.

To separate enables between the displays, a counter timing

for one millisecond is needed to at least control the enable of

the finite state machine. This counter will contain a count of

105 to achieve this timing value. The output of the FSM will

connect to each of the eight-to-one multiplexors, and into a

three-to-eight decoder, which will in turn connect with the

anode of the displays. This is required to turn on the displays

with their respective input. For example, if the select is 101,

the 5th input into the MUX will be allowed through into the

displays, but those bits should be displayed on the 5th display

only as well. The decoder will ensure that all the other

displays are off except for the 5th, and those bits will end up

flashing their corresponding number for 1ms until the next

pulse arrives. The diagram for the entire serialize is found in

Figure 4.

 Figure 4 – 7-Segment Serializer Diagram

F. Finite State Machine for Serializer

As mentioned in the previous section, a FSM will be used
to control the selects of a few components. The input of this
FSM will be controlled by the output pulse z of the counter
inside the serializer. The pulse z from the counter will feed
directly as the input enable for the FSM so that when the
counter reaches one millisecond, the machine will move to the
next state and change the select output. With eight different
inputs, there will be a three-bit select to choose between all
those inputs, and therefore eight different states in the FSM
[4]. Each state will hold a constant select value and wait for
the next enable pulse to move to the next state. The
Algorithmic State Machine (ASM) of this FSM is shown here.

Figure 5 – ASM for the FSM within the Serializer

III. EXPERIMENTAL SETUP

In order to test the functionality of the project, a VHDL
testbench was created for the top file using the software
Vivado. Additionally, an external interface test was used on
the Nexys FPGA board to visualize the stopwatch count.

The testbench simulation was focused on showing the
main count of the design. To efficiently see the results, the

design itself can be minimized so that very long times are not
required to be simulated in the waveform window. The
alternative is to just have long run times, and this is due to the
one millisecond counter controlling the FSM. The simulated
waveform can be seen in Figure 6.

 Figure 6 – Behavioral Simulation Waveform
With the external interface, the Nexys 50T FPGA was

required due to the project and XDC file being create for such
a board. Once the board was plugged into the computer via
USB and on, the hardware manager in Vivado was able to
connect with the board. After the bitstream was generated, the
stopwatch began to run without any issues. Each switch
function was tested, and a lap was written and read to each
register to ensure the lap was working properly. The design
was expected to contain the stopwatch continuously counting
until obstructed, and this was shown in both methods of
testing.

IV. RESULTS

The functionality of the stopwatch worked as expected and
the obtained results were enough to prove that the design
works as intended. Every time the stopwatch design
programmed onto the FPGA board and tested, it was
consistent and unfaltering it the performance. Each designated
switch indicated as an input served its purpose. There was
some initial uncertainty with the RAM lap function and the
inputs since there were some adjustments required to have the
RAM work with the counting feature of the stopwatch.

Some of the adjustments made in the components can be
confirmed in their usage. The serializer in this stopwatch
varies from the common serializer utilized in most cases.
Adding the various multiplexors into the design proposed a
new challenge as to whether the stopwatch and the laps would
show at the right time. Using the RAM as the lap function
proved very useful as well. If desired, many more registers can
be added in order to add more laps into the design. The only
limitation would be the input limited on the board interface
used.

When attempting to simulate this design using the
testbench, it was difficult to create a waveform where all the
desired signals are visible and correct. Some adjustments were
required to get this outcome, but only due to minimization in
the circuit itself.

The FSM of the stopwatch worked perfectly to control the
flow of the datapath circuit. It was able to control both input
multiplexors of the serializer and continue to have the displays
turn on at the same time. While the design performed perfectly
in this case, the FSM may be able to adapt to a different design
of stopwatch and have more control over the overall datapath
circuit.

CONCLUSIONS

This project adequately counts up until the maximum
count and can be expanded further using a board which
contains more displays. When using the Nexys 50T FPGA for
implementation, the design performed as expected and
without any issues.

For the purpose of storing data, a random access memory
emulator is incredibly useful and can be used in any case
where small amounts of data is required to be kept for some
time. Eventually, the RAM will become too cumbersome with
more addresses and a different method of implementation can
be used instead. Similarly, the serializer can be changed to fit
the needs of a design feeding many component outputs to the
displays. With more components, the design can be
inefficient, so the serializer can be made to simply use one
multiplexor and instead change the component itself. In this
case, one single multiplexor may be used to simply feed both
the count and the laps into one single connection. This would
require another FSM to control the lap inputs.

When testing a design with larger increments of time,
design minimization seems like a requirement and can be
difficult to obtain desired results. This is a remaining issue to
be solved. Additionally, having a simulation which displays
the laps as well as the count proved difficult as well, and an
adequate solutions will have to be found to avoid this problem
in the future.

This project can be improved by trying to condense the
lapping function into a more efficient subcomponent overall.
When considering the exponential increase of the RAM, the
design may become too repetitive and inefficient for
continued implementation. With more desired addressed, the
number of registers needed continues to increase. In this
design, a few registers with a FSM control can replace the
component.

With that being said, the project still performed in an
outstanding fashion with a unique design. The digital logic
design knowledge obtained throughout the course was vital in
completion of the project. This project can further push to test
the horizon of hardware design overall in further studies.

REFERENCES

[1] D. Llamocca, “VHDL Coding for FPGAs Unit 7,”
Reconfigurable Computing Research Laboratory (RECRLab),
Electrical and Computer Engineering Department, Oakland
University.[Online].Available:http://www.secs.oakland.edu/~l
lamocca/Tutorials/VHDLFPGA/Unit%207.pdf.

[2] D. Llamocca, “Unit 6 – Synchronous Sequential Circuits,”
Reconfigurable Computing Research Laboratory (RECRLab),
Electrical and Computer Engineering Department, Oakland
University.[Online].Available:http://www.secs.oakland.edu/~l
lamocca/Winter2021_ece2700.html.

[3] D. Llamocca, “Unit 7 – Introduction to Digital System

Design,” Reconfigurable Computing Research Laboratory
(RECRLab), Electrical and Computer Engineering
Department, Oakland University. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/Winter2021_ece2700
.html.

[4] D. Llamocca, “VHDL Coding for FPGAs Unit 6,”
Reconfigurable Computing Research Laboratory (RECRLab),
Electrical and Computer Engineering Department, Oakland
University.[Online].Available:http://www.secs.oakland.edu/~l
lamocca/Tutorials/VHDLFPGA/Unit%207.pdf.

[5] D. Llamocca, VHDL Coding for FPGAs. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.htm
l.

APPENDIX

Figure 7 –Enlarged Behavioral Simulation Waveform

Figure 8 –Enlarged Top File Diagram

Figure 9–Enlarged Counting Component

Demo URL: https://www.youtube.com/watch?v=NXjo55t8gvE&ab_channel=MarissaToma

https://www.youtube.com/watch?v=NXjo55t8gvE&ab_channel=MarissaToma

