
4-Way Traffic Intersection Control
Traffic Light Simulation

Joseph Asteefan, John Drabik, Christopher Thweatt, Madison Cornett

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: jasteefan@oakland.edu, jdrabik@oakland.edu, cgthweatt@oakland.edu, mcornett@oakland.edu

Abstract - The purpose of this project is to program an

Artix-A7 FPGA board using VHDL code to function as a

traffic controller simulation using an input counter values

and output LED markers. This was achieved using a finite

state machine. The final code was generated to the FPGA

board and demonstrated using external LEDs on a

separate bread board.

I. INTRODUCTION

The goal for this project is to simulate a functioning

4-way Traffic Light Controller using VHDL and a field

programmable gate array (FPGA), designed with digital

logic tools, including state machines and synchronous

circuits. Using FPGAs as field hardware would provide

traffic engineers the ability to quickly prototype and

implement traffic signal updates to improve road and

construction conditions. The reprogrammable nature of

FPGAs enables exploration of states, flexible counters,

and accumulators that will be essential for this traffic

control simulation to function.

II. METHODOLOGY

Vivado was used to program an Artix-A7 FPGA

board. Buttons, Pmod ports and LEDs were utilized to

show the different functions of the 4-way traffic

intersection scenario. A 4-way traffic intersection

control light is demoed within the project with the use

of a state machine. Each state represents a different

light sequence for each of the signals, and cycles

through the clock tick. An example of one state would

be S0 = green for the road going north/south and red for

the east/west road. A variable “count” is created and is

added based on the clock tick. The state will change

depending on the amount of time passed, and if the

“count” value has reached a high enough count. This

state machine produces a six-bit segment. The first

three bits in the segment represent the light pattern for

the north/south road direction and the next three bits

represent the light pattern for the east/west road

direction. An example of this case would be if the six-

bit segment is 100001 the resulting light pattern would

be 001 (red) for the east/west and 100 (green) for the

north/south.

A. State Machine

A state diagram is used to show how the traffic

flows. Starting at S0, the North/South lights stay green

for 10 seconds, then turn yellow for 3 seconds, then

turn red for 2 seconds. Starting at S3, the same happens

for the East/West lights as the North/South lights stay

red. A state table is provided to determine how each of

the different LEDs will be active and which state the

device will be in during these times. For the two

directions, East/West and North/South, the state

machine determines which state the light should be in

to show the correct color LED at that time. For

example, if the North/South direction has a green light,

the opposite road at that intersection would then have to

be a red light, as shown in S0. Figure 2 shows each of

the possible variations of states that the traffic light may

be in and the finite state machine determines when to

switch to each state.

Figure 1: State Diagram

mailto:mcornett@oakland.edu

Figure 2: State Table with Traffic Outputs

B. Counter

An integer counter is used to count the number of

seconds. The Artix-A7 FPGA’s built in clock runs very

fast, but it was found that one second was equivalent to

100 million in integer. Since 30 seconds are needed for

a traffic cycle, we needed a 3 billion integer range.

However, the integer range for VHDL is between -2

and 2 billion roughly, so a -1.5 billion to 1.5 billion

range is used. Starting at -1.5 billion, -1.4 billion is one

second in, -1.3 billion is two seconds in, and so on. This

allows the correct timing of the traffic intersection.

C. 7-Segment Serializer and Integer to BCD Decoder

A BCD (4-bit) decoder and serializer are used to

add a timer, in decimal, that displays the length of

traffic cycle and ensures the traffic cycle is 30 seconds.

The BCD decoder is used to take the counters large

integer values and convert them two 4-bit values, one

for the tens digit (B) and the other for the ones digit

(A). For example, if the count is less than -1.2 billion,

which is equivalent to 3 seconds in, set A=0010 and

B=0000. Suppose it is 15 seconds in, A=0101 and

B=0001. These values are eventually used in the

serializer.

The serializer is used to display both digits, the ones

and tens spot, at the same time. The FPGA board can

only display one 7-segment display at a time, so a

serializer allows the two digits to take turns flashing

every one millisecond, which gives the illusion that

they’re both on at the same time. The serializer is

composed of a counter, finite state machine (FSM), 1-

to-2 decoder, 2-to-1 multiplexer and BCD to 7-segment

decoder [1].

The counter set the enable for the state machine

high every millisecond. Setting the enable high

switches the state in the FSM, as seen in Figure 4. At

S0, the ones digit displays and at S1, the tens digit

displays. The multiplexer and 1-to-2 decoder determine

what number to display and on which display.

Figure 3: 7-Segment Serializer and Integer to BCD Decoder

Figure 4: FSM in Serializer

D. Top File

The file consists of putting all these components

together, as seen in Figure 5. The counter feeds its

output to the traffic state machine and the integer to

BCD decoder. The traffic state machine outputs the

lights. The decoder feeds its output to the serializer

which displays the timer.

Figure 5. Top Level Design

III. EXPERIMENTAL SETUP

Vivado was used to program the Artix-A7 FPGA

board. A reset button, built-in clock, breadboard,

jumper wires external red, yellow, and green LEDs

were utilized to show the 4-way traffic intersection.

220Ω resistors were used for the LEDs. The Pmod ports

were used to output the six-bit light outputs on the

breadboard.

IV. RESULTS

Once the top file was complete, and the bitstream

was uploaded to the FPGA board, it was discovered that

the count was too quick due to the built-in clock being

fast. The count wasn’t exactly 1 second like it was

originally thought, and all the LEDs looked like they

were all simultaneously on. To fix this issue, a larger

integer value was created to reduce the rate of change

and to allow for more time in between each cycle, and

to show each of the different LEDs lighting at their own

time. After fixing this, the LEDs displayed correctly, as

well as the timer.

CONCLUSION

Utilizing a state machine structure and accumulative

counter as a measured timer, the 4-way traffic light

simulation was successfully adapted through the

summation of varied VHDL code. The flexibility of

FPGA experimentation in this situation allowed for

learning and advancement of code through trial. Along

with class taught architecture, the use of the Artix-7

Pmod ports were trialed to enable the use of external

hardware that confirmed the function of the traffic

control simulation. Future experimentation could

include the implementation of FPGA hardware in the

field, along with a user interface that would permit a

technician’s signal timing changes for appropriate road

conditions.

REFERENCES

[1] Llamocca, Daniel. VHDL Coding for FPGAs,

www.secs.oakland.edu/~llamocca/VHDLforF PGAs.html

http://www.secs.oakland.edu/~llamocca/VHDLforF%20PGAs.html

