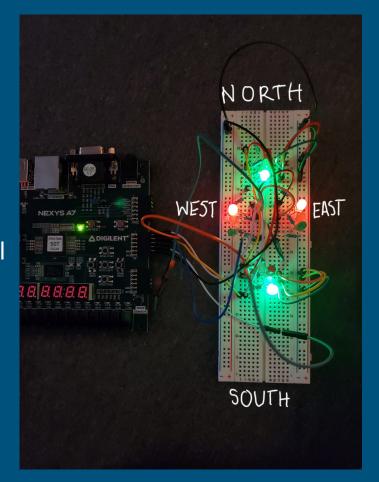
# Day and Night Traffic Light Controller

Matt McAuliffe & Emily Boar

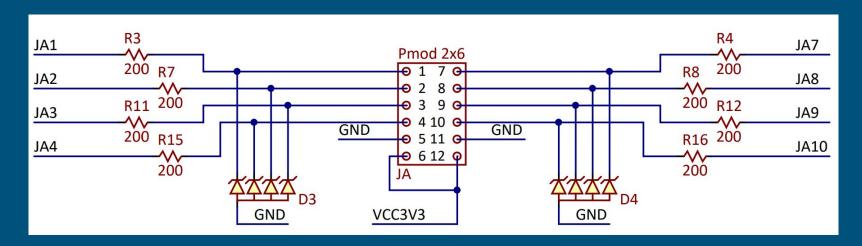

#### What is it?

- Traffic light simulator for a 4-way intersection
- Switches between day and night mode
  - o In Day Mode:
    - 50 sec duration for states ex. N/S = Green \_ E/W = Red & N/S = Red \_ E/W = Green
    - 24 sec duration for in between states ex. N/S = yellow \_ E/W = Green, N/S = Red \_ E/W = Yellow, etc.
    - 40 sec duration for the red states ex. N/S = Red \_ E/W = Red, etc.
  - In Night Mode:
    - on for 10 sec off for 10 sec (blinking) N/S = Yellow : E/W = Red

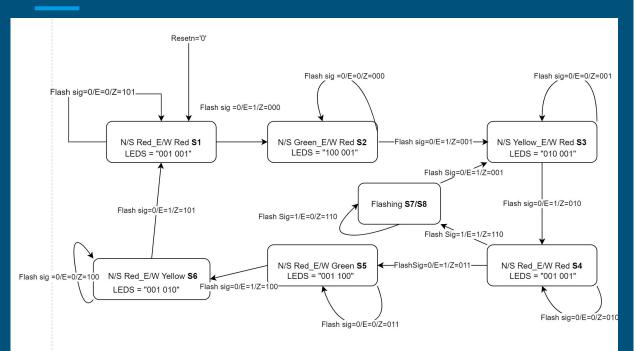


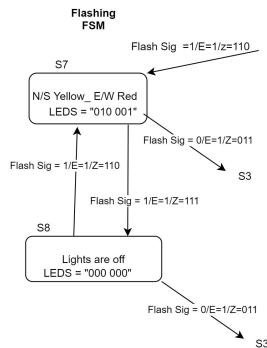
#### What Was Used...

- Nexys A7 with Vivado Software
- 1 clock divider
- 4 counters
- 1 8-to-1 MUX (a bit different than a traditional mux though)
- 1 Day/Night FSM
- Breadboard
- 12 Leds & 12 Resistors

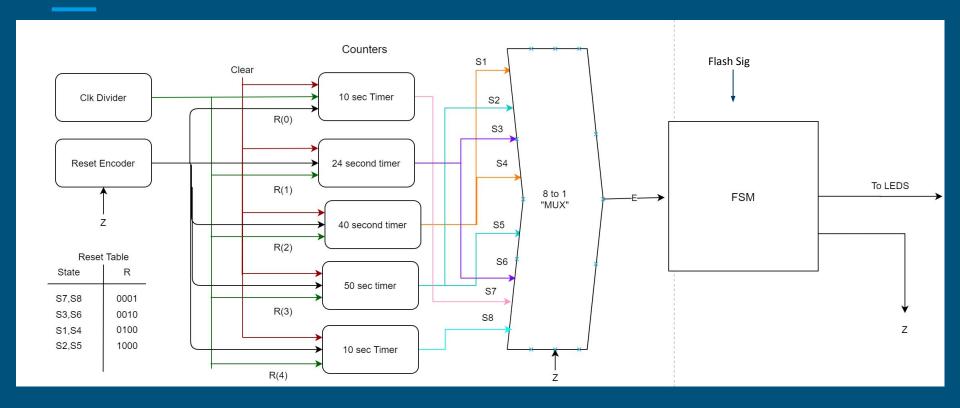



#### How it Functions


- The clk divider will change our 100 MHz master clock to get approximately 10 sec per pulse. These pulses will guide how fast the counters will count
- Four counters will be used that will correspond to various states. Counters will each have different timing values such as 10 sec, 40 sec, 50 sec, and 24 sec.
- Those counters will lead to a 8-to-1 MUX controlled by a 3 bit select line z.
  Each z value is unique to each state and will select the correct counter to be used for that state
- The FSM will start at S1 since resetn will be enabled there, from that when the output of the 8-to-1 MUX, enable = 1, it will make the states transition.
   The flash signal will be triggered by a switch to move between night and day


## Implementation With LEDs

The PMOD port JA was used to send signals to the LEDs on the breadboard. Pins 1, 2, 3, 4, 7, and 8 were the pins that were used to send the logic from the FPGA to the LEDs. Pin 5 was used as GND for the LEDs




#### Detailed FSM





## Block Diagram



### Issues and Improvements

#### Issues

- Originally only 3 counters were used, but 5 counters being used was easier to code logically and it helped the flashing states S7 and S8 transition between each other better
- Implementing the system on an outside source, like a breadboard, was a bit challenging in the beginning because we weren't sure how to use the PMOD ports
- Tried a few different integers to put in the clock divider so the counters could count slower

#### Improvements

- Could have included a crosswalk system using the 7-seg display
- There could have been options so that the cars could be allowed to turn left or right too
- The circuit could have looked prettier but all the LEDs had to be constructed on one breadboard and not two, which made it look bulky