

Day and Night Traffic Light Controller
Utilizing a Timed Implementation

Matt McAuliffe and Emily Boar
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: mmcauliffe@oakland.edu and eboar@oakland.edu

Abstract—this paper explores the design of a four-way traffic
controller with the options of a day and night mode. Where the
night mode consists of flashing yellow for the high traffic road
and flashing red for the low-traffic road. It was found that
using a clock divider, counters, multiplexers, and finite state
machines was the best way to construct the design and
implement it on a breadboard.

I. INTRODUCTION
Traffic lights serve an important role in today’s society,

because they regulate the traffic flow of automobiles.
Hence, the motivation towards this project is to gain a better
understanding of how a traffic light system can be designed
and used on an FPGA board. This project intends to provide
a working model of a standalone hardware based traffic
controller for a four-way intersection with no left hand turns
or right hand turns. It was done by utilizing what was
learned in the course about counters, multiplexers, and
finite- state machines. Some topics that had to be researched
and learned were how to make a clock divider and how to
use PMOD ports. This traffic light project brought to light
how the system works in real life, as well as how the system
could be made on the FPGA using Vivado.

II. METHODOLOGY
The knowledge learned in the ECE 2700 course was

utilized to design our circuit. First the problem was broken
down into smaller steps. After this it became apparent that
the problem would be best represented by several states, as a
result of this conclusion, a finite state machine was
determined to be the most appropriate tool to utilize during
the design sequence. To accompany the finite state machine,
clock dividers, counters, and multiplexers were used to
design the project.

A. Assigning States
Looking into the logic of how a traffic light works, we

designed the states. We also decided to include a night and
day mode to simulate normal traffic as well as how it would
work with flashing lights. Each state in the daytime cycle
relies on only the input E to transition it to the next states.

For the night cycle it relies on the flashing signal to be
active as well as E to be high so that it can transition from a
state of being lit to a state where the lights are all off. These
states were assigned and are shown in fig. 1. The flashing
states are S7 and S8.
 A bubble state diagram was also made to understand
the flow of the traffic light logic system. E acts as the
transition signal between states and each state is labeled to
create the led logic value when it is in that state. This state
diagram is shown in fig. 2.A bubble state diagram was also
made to understand the flow of the traffic light logic system.
E acts as the transition signal between states and each state
is labeled to create the led logic value when it is in that
state. The full state diagram is shown in fig. 2. The flashing
states S7 and S8 were put in their own model for neatness
and are shown in fig. 3.

Figure 1: State table with assignments

Figure 2: FSM

mailto:mmcauliffe@oakland.edu
mailto:eboar@oakland.edu

Figure 3: Flashing FSM

B. Utilizing Clocks
We decided to manipulate the master clock of 100MHz

with one clock divider to create slower time pulses.
Originally more clock dividers were designed, but it was
realized that they were unnecessary and only one would be
needed. This divider would then lead to 5 different counters
which will allow the counters to count at a slower pace. The
5 separate counters were set to count for 4 different time
intervals. Three of these counters will each take care of two
states. For example, S1 and S4 will be controlled by a 40
second counter. The only states that will be controlled by
the same amount of time but with different counters will be
S7 and S8. These counters will be reset by using the Z value
and an encoder to make a five bit reset bus. Where each line
is ‘0’ when the corresponding counter is not in use, and ‘1’
for the counter that is currently being used. The clock
divider and the five counters and their assigned states are
shown in fig. 4.

C. Selecting with a Multiplexer
 This multiplexer worked just like a regular mux,
however some of the clocks were mapped to multiple inputs
of the mux since three of the counters are shared by states in
the FSM.

Figure 4: Top diagram of the whole system

D. Hardware and External Implementation
 Moving from the simulation, it was decided that a
breadboard would be the best place to create the final
demonstration of the traffic light project. 12 leds and 12 of
the 220 ohm resistors along with wires were used. Six leds
were hooked up to the pmod port JA on the FPGA, because
the rest of the leds would be wired in parallel to those
directly hooked up to the JA ports. There were six Leds that
simulated traffic flow of the north and south and there were
six leds that simulated the traffic of east and west. The
resetn state was connected to the CPU reset button on the
board. A switch, SW0, was used to simulate the flashing
signal in the code, which let the fsm change to night mode
or day mode.

III. EXPERIMENTAL SETUP
In order to simulate and test the design, a test bench was

created. At first the simulation was not running for the
expected period of time, so we had to type into the console
our desired run time and then it worked. Then it was seen
that the simulation was running far too fast, so the integer
value in the clock divider was increased. This new longer
time was tested physically on the breadboard with the leds
since the simulation was taking far long to run. Watching
the times of each state through the leds, it was found that the
correct integer was used to create a longer more desired
time for each state.

IV. RESULTS
 When running the test bench with the correct clock
divider construction, everything looked like it was working
well at first glance. But, upon implementing it on the
breadboard, it was realized that the flashing signals were
moving far too fast. The issue was debugged and it was
noted that another counter had to be made for S8, where all
the leds would be off, instead of one counter being put for
both S7 and S8. After that add on the project physically ran
as expected. The lights all start off as red and then N/S turns
green while E/W, then it gradually moved to N/S being
yellow while E/W stayed red, and after that the lights all
turned red. The cycle then continued in a gradual and safe
traffic manor. The physically implemented project can be
seen in fig. 5.

Figure 5: external implementation

CONCLUSIONS

 The most significant understanding from doing this
project was seeing how the clock can be manipulated and
used to control the timing of a finite state machine. There
were a few challenges along the way such as understanding
how many counters we need along with how the counters
would be reset and allow one state to move to the next. The
team eventually overcame those challenges and learned
from it. One part that had to be learned more externally was
how to use the pmod ports for the project. From learning
more about that, it taught the team how to wire those pins to
provide signals to objects, such as leds, on a breadboard.
Some improvements that could be made for a future traffic
light system would be to utilize the sensor so that it senses
when there are cars waiting at the traffic light so it can
change more efficiently. Another improvement would have
been allowing for the cars to be able to turn left and right.
For emergency vehicles, the sensor could have been used to
show that a vehicle is coming and it would give priority
right away to whichever direction it was coming from.
Despite this traffic light system not having those features, an
efficient system was still built and from it the team learned
how to create their own design to be coded in Vivado and
used by the FPGA board.

