
 

Signed 4-bit Calculator 

List of Authors (Rachel Dingman, Kevin Huffman, Alyssa Musienko)  

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

e-mails: racheldingman@oakland.edu, khuffman@oakland.edu, amusienko@oakland.edu  

 

 
Abstract— This project was created to explore the possibility of 

constructing a four function calculator using digital logic to 

program a Field Programmable Gate Array (FPGA). The 

design accepts user inputs to dictate the function being 

performed and the two separate 4-bit numbers that the 

calculations are being performed on. The final calculator design 

also allows for increased usability by displaying the calculation 

on a Universal Asynchronous Receiver Transmitter (UART) 

controlled display. Through careful implementation, and 

multiple design iterations, it was discovered that an FPGA can 

successfully be used to run addition, subtraction, multiplication, 

and division programs without error or miscalculation.  

I. INTRODUCTION 

This project explores the possibility of recording and 
processing information from an FPGA in real time and 
displaying that information on a UART display. The system’s 
inputs include two 5-bit numbers in sign and magnitude, a 4-
bit input to dictate what function will be performed, and an 
input command to run the calculation. The motivation for 
designing this system is expanding it to encompass more 
processing and more inputs. By expanding this project, a fully 
functional calculator that allows the user to input complex 
equations could be built. 

This project is the culmination of many concepts covered 
in the lectures and labs of ECE 2700. This includes using full 
adders to create addition and subtraction programs, using a 
combination of partial and full adders to multiply binary 
numbers, using a complex algorithm to create a division 
program, the concept of finite state machines, and using user 
inputs to dictate when to run specific commands. This 
program also utilizes concepts not specifically covered in 
class, including the interfacing of an FPGA Board with a 
UART display.  

II. METHODOLOGY 

This project was designed to create a simple signed 4-bit 
calculator using sign and magnitude inputs. The switches on 
the FPGA are used to enter the values, with each value having 
a sign switch as its most significant bit (MSB). This brings 
the inputs to 5 bits, with the magnitude being 4 bits. Since 
this is to be a signed calculator, conversion of an input to 2’s 
complement (2C) is necessary when the sign is negative 
(binary value of 1). This was accomplished using if 
statements to determine if the 5-bit input is positive or 
negative. If the input is found to be negative, then the 2C 
operation is performed on the magnitude. If the input is 

positive, then it will not change and continue through the 
program. 

Due to the nature of basic sign convention, 2C 
conversions only need to be performed on inputs going to the 
addition and subtraction blocks. For multiplication and 
division, simple exclusive or (XOR) gates were used on the 
sign bit of the inputs to determine the sign bit of the output. 
This helped to simplify the system by keeping the math 
operations in basic unsigned implementations. 

The system utilizes a program called PuTTY to use as the 
UART display [1]. The program creates a serial connection 
between the board and the computer to display the desired 
information on a console window. To activate the UART 
display program, the center button on the button array of the 
FPGA is used. This acts much like an enter button on an 
actual calculator.  

The Block diagram (Figure 9) and Vivado schematic 
(Figure 10) are both shown at the end of this report.  

A. Addition and Subtraction 

To perform addition and subtraction, the most 
straightforward implementation is to use a Full Adder block. 
By linking together multiple full adder blocks, a multiple bit 
adder system can be created. This concept is shown below in 
Figure 1. 

 
Figure 1: Diagram for creating n-bit adders 

 
For this application, since we have an input of 5-bits, a 6-

bit adder is used to prevent any overflow errors. To account 
for this system, the 5-bit input is sign-extended to 6-bits. 
While the concept shown above is for addition, it can be 
slightly altered to become a subtractor by negating one of the 
inputs before it enters the Full Adder block. Since this basic 
system is an unsigned adder/subtractor, the inputs were 
converted into 2’s complements in order to create signed 
addition and subtraction. Since this will create an output that 
is in 2C, the output of this system must then be converted 
back to sign and magnitude using the previously mentioned 
2C process once again.. 



B. Multiplication 

The multiplication function utilizes Dr. Llamocca’s array 
multiplication program, which takes two unsigned 4-bit 
inputs and provides the 7-bit output [2]. This program utilizes 
Full Adder blocks and logic gates to successfully multiply the 
two inputs. The diagram for this concept is shown below in 
Figure 2. 

 
Figure 2: Diagram of 4-bit multiplication 

 
This program was edited to account for the sign of the 

inputs, by taking the XOR of the two sign bits and assigning 
it to the sign bit of the output, creating an 8-bit output in sign 
and magnitude. 

C. Division 

The division function was created by modifying Dr. 
Llamocca’s Lab 6 from the Winter 2020 - EGR 2700: Digital 
Logic Design course in which an unsigned divider was 
created [2]. The inputs were adjusted so that they were four 
bits each and the counter was adjusted to accommodate this 
as well. There was also no longer a need for the hex to 7-
segments decoder and it was left out. The MSBs of the inputs 
are put through an XOR gate to determine the sign of the 
output, just like for the multiplication. The division function 
then outputs a 5-bit result in sign and magnitude. If the 
division has a remainder, it is ignored. 

 

 
Figure 3: Block diagram of division function 

 

D. UART Display 

The UART display was created using a program adapted 
from Dr. Llamocca’s Digital Library of FPGA programs [2]. 
When the original program was run it only sent 8 bits to the 
UART display which allowed one ASCII character to be 
printed. This program utilized switch 7 down to switch 0 on 
the FPGA to control the 8 bits being sent to the display. 

In order to adapt this program for the purpose of this 
project, modifications were necessary to allow for the 
printing of 9 ASCII characters every time the program was 
run. To allow for this, modifications had to be made to force 
the program to send 72 readable bits to the UART display or 
8 bits for each ASCII character that needed to be printed. 
Originally this was attempted by creating a top file and 
porting Dr. Llamocca’s UART program 9 times as shown in 
Figure 4. 

 

 
Figure 4:  Initial program for the UART display 

 
However, it was quickly discovered that this was an 

impossible system to implement because all 9 functions 
attempted to send their output data to the UART display at 
the same time which caused a “multiple drivers error” for the 
output variable that fed data to the UART. So this program 
was scrapped in favor of a different design. 

In order to allow the asynchronous transfer of 72 bits to 
the UART display, only one program could be run with a one 
variable output that changed at a rate of 9600 Hertz in order 
to accommodate the UART receiving data at a rate of 9600 
Baud. This meant that all output bits would have to be strung 
together into a single 72 bit output in the program. This was 
initially attempted, but the program only read some of the 
bits. After carefully scrutinizing the values the UART was 
displaying, it was discovered that a spacer bits where 



necessary between the 8 bits that were being used to generate 
the ASCII characters shown on the UART display. Without 
the spacer bits in place a series of horizontal lines would 
appear in place of the characters due to the UART display not 
believing that it had a complete data set. This output can be 
seen in Figure 5 below. 

 

 
Figure 5: Error result in the PuTTY screen 

 
Once this was realized the output variable was expanded 

to its final size of 84 bits in order to fit 12 spacer bits on top 
of the 72 data bits output from the program. 

In this design the program allowed for some bits to remain 
the same for all calculations. An example of this is the equal 
sign which had the same 8 bit sequence no matter the function 
being performed. This allowed for simplification of the 
program. For the hexadecimal values displayed on the UART 
only 16 options were possible, this meant that only 4 bits of 
data would be needed to represent each number in the 
program and only 16 possible options had to be accounted for 
in the program. This rule also applied to the function symbol, 
there were only 4 possible function symbols that could be 
displayed so the 8 bits that dictate the function symbol can be 
controlled by user input, shown in Figure 6. 

 

 
Figure 6: Symbol selection based on user input 

 
These simplifications are what allowed the creation of an 

84 bit long output based upon only 12 bits of user input. 

E. Top Files 

The overall project was separated into two projects: the 
math calculations and the UART display. Beginning with the 
math calculation portion, the two input values from the FPGA 
go through registers when the system is enabled. The division 
function is then enabled so that all the numerical calculations 
can be performed. Since it is the only synchronous circuit in 
this section, the “done” signal sent out when the division is 
finished is used to transition into the next state. These four 
output values are then sent to another set of registers, and then 
to a multiplexor (MUX). Depending on the user input, the 
MUX then lets through the appropriate function output. A 
state machine was added to control the flow of the values 
through this system, a diagram of which is shown in Figure 
7. 

 
Figure 7: State Machine Diagram 

 
Errors had been occurring in the division output, 

presumably because it needs both an enable and a certain 
amount of time to complete the function. The state machine 
allowed for a structured and controlled flow through the 
system so that these errors were avoided. The output of the 
MUX is then sent to the UART display file, along with the 
original 5-bit sign and magnitude inputs and function input to 
create the math equation. The display file outputs the results 
to the PuTTY screen when the center button is pressed. 

III. EXPERIMENTAL SETUP 

For the mathematical calculations portion, a simple test 
bench was utilized to test the results of each function. Inputs 
A and B were set to a certain value, and the timing diagram 
simulation was used to visualize the output of the program. 
Each math function was tested for each pair of inputs, and 
multiple different pairs were checked to test the accuracy of 
the sign convention as well as the numerical output. 

For the UART display, a test statement was entered using 
‘X’ to indicate where user input or the system output would 
be. This proved to be most efficient, because it allowed for 
testing on an individual scale before it was implemented with 
the rest of the project.  

IV. RESULTS 

The results of this system were how we had originally 
envisioned it. The user must first enter the values, then select 
the math operation, then turn on the enable, and finally hit the 
center button to enable the UART communication to display 
in the console window. This result is shown below in Figure 
8, using inputs -10 * 5, in hexadecimal form. 

 

 
Figure 8: Output displayed on the PuTTY screen based on 

user input 



The result matches in both sign convention, and the 
numerical output. The hexadecimal output equals 50 in 
decimal. 

The only portion of this project that displayed unexpected 
characteristics was the UART display. After careful 
inspection of the information being displayed on the UART, 
it was discovered that some of the bits sent by the FPGA were 
not being read by the UART. This was circumvented by 
adding “spacer bits” in between the bits being used to control 
what ASCII characters appear on the display. It is believed 
that these spacer bits were necessary because of a mismatch 
in clock speed between the FPGA board and the receiving 
port of the UART. While both ports were set to a read/write 
rate of 9600 Baud, it is possible that a small clock speed 
difference compounded over multiple clock cycles led to the 
occasional misreading of data. 

 

CONCLUSIONS 

An FPGA board can successfully be used to compile 
complex programs and dictate which algorithms to run based 
on user inputs. In the case of this project, algorithms 
successfully performed addition, multiplication, subtraction, 
or division based on the user inputs. The FPGA board can 
also be used to successfully display information on a UART 
display based upon user inputs. The board in this project 
displayed the signs, calculation inputs, and the calculation 
answer.  
 

REFERENCES 

[1] Download PuTTY: latest release (0.73). [Online]. Available: 
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html. 
[Accessed: 14 April 2020]. 

[2] D. Llamocca, VHDL Coding for FPGAs. [Online]. Available: 
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html 
[Accessed 14 April 2020]. 

 

 

 

 

 

 
 

Figure 9: Full Block Diagram of Signed Calculator System 



 
Figure 10: Full Schematic of Signed Calculator System 


