Temperature Controlled Fan

Created by: Gjozef Ivanaj, Samuel Urban, Luke Nuculaj, and Andrew Czarnecki

Introduction

Project Overview:

- Temperature Controlled Fan
- Displays Temperature on Nexys 4 DDR Board
- Cools targeted area

Real World Application:

- Can be used within homes
- Can be used within commercial buildings
- Technology used to create project can be applied in many ways

Introduction

Goals:

- Apply knowledge gained throughout the semester
- Create unique design
- Make a well-executed project with real-world uses

Background:

- Temperature sensors are used in several modern applications
- The combination of the sensor with a reading and a fan is highly probable
- Homes, Cars, Boats, etc. have a need for this similar design

Hardware/Software

- Nexys 4 DDR
 - ADT7420 Temperature Sensor
 - Temperature Display
- Pulse Width Modulation Signal
 - DC motor
 - Power Supply
 - Transistor
- Breadboard
- Wires

Configuration:

Block Diagram

PWM and Linear Interpolation of DC

Temperature Sensor Diagram

ADT7420 Temperature Sensor

Discussion/Results

The project was a success:

• Initial research to understand components

- Developing, adjusting & debugging (software/hardware)
- Creating separate code & combining

Oscilloscope Results

View of different duty cycles through an oscilloscope, used to debug. Why does the Hardware manager in Vivado kept shutting down? We seemingly draw too much current from the I/O pin, we added some resistance hoping to help..

Runnir	ig c		Va	iting			
Freq:	903.61	AHz	Vmax: -2.43V				
Cycl:	1.106m	S	Umin:	-7.620			
Dutu:	58.8 2		Unn:	5.190			
- Surge			Vrms:	3.32V			
		Ē					
-				1			
		-					
20	DC	0.5ms	AUTO	1			
V/DIV	SE	C/DIV	TRIGGER				
	(1			

Freq: 535.799Hz Cycl: 1.807ms PW: 1.350ms						Umax: Umin:- Vaur:			-5.27V 12.88V -6.16V	
Duty	: 71	: E.		1144			Jpp: Jrms	:	6.6	19V 19V
Maren	white	F UN		nt th	lijin I	anan T	<u>illin</u>	e i sin	in a	et ele
2V	DC		10	ns		AU	TO		ł	

Conclusion

Findings:

- Implemented in class topics
- Real world applications
- Implementing software and hardware
- Debugging

Group Work:

- Time management
- Critical thinking skills
- Communication skills

Link of Video:

https://www.youtube.com/watch?v=YVdxcObGVf0