
Temperature-Controlled Fan

Final Report

List of Authors (Gjozef Ivanaj, Samuel Urban, Luke Nuculaj, Andrew Czarnecki)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: gjozefivanaj@oakland.edu, surban@oakland.edu, lukenuculaj@oakland.edu, asczarnecki@oakland.edu

Abstract—The purpose of this project was to design and build

a temperature-controlled fan. When the temperature sensor on

the FPGA senses a temperature that is higher than the

specified temperature desired, the fan will be activated. This

will be done through the use of a DC motor that receives a

pulse-width modulation signal from the FPGA.

Simultaneously, the seven-segment display will read the

temperature and display the value on a Nexys 4 DDR board.

When designing and executing this project, it seemed that it

would be rather simple and for the most part it was because it

went to plan. However, there were some things that were

unanticipated and therefore adjustments were made to

accommodate. For instance, to get the temperature displayed

on the board in a format that every person can understand

became somewhat tricky. The 2’s complement output from the

temperature sensor was not ideal to display. Also, what if the

temperature was negative? This too created new problems for

the group. That is why, when beginning a project of this

caliber it is important to use time management skills and plan

for unexpected problems.

Overall, creating a detailed version of the design is sought after

before trying to create it with VHDL code. Furthermore, it is

crucial to research the hardware and software that is necessary

to avoid confusion and time wasted. This will help create a

project that is well-constructed and performs as expected.

I. INTRODUCTION

This report will cover the process that it took to reach a
final implemented design of a temperature-controlled fan
with a display of the temperature. Temperature controlled
fans are used in homes to make daily life more comfortable
and have many other real-world applications. This is
especially the case with the exponential growth in assistive
human technology. In recent times, almost all technology is
being created so that it is hands free. This is why it was
important for our design to activate without any assistance as
well as be practical for daily life when being used on a larger
scale.

The second motivation behind this design, other than the
desire for human assistive technology, came from the idea
that many electronics, furniture, artwork, etc., require a
climate-controlled environment. The goal we wanted to
achieve was to eliminate the worry of constantly checking
that the temperature is at a certain spot. Therefore, the goal is

to initiate the fan when the temperature exceeds a certain
programmed interval. The design of this includes the use of
several topics learned in class ECE 2700. To start, the
VHDL code used to output bits from the temperature sensor
(ADT7420) entails the use of several registers, parallel shift
registers, finite state machines, pulse generators, and D-flip
flops. This will generate a 16-bit output that is the
temperature. The first 9 integer bits are significant bits and
the other 7 are fractional bits that are less important for this
design [2].

Pulse-width modulation through the use of the Nexys 4
DDR was a part of the code that was not taught in class.
However, through research along with trial and error, this
part of the project was also completed. From a general
standpoint, PWM effectively chops a signal into discrete
parts. The advantage of this being that power loss in
swapping accessories is very little. The methodology of this
report will further cover the PWM design in detail. The rest
of this report will cover the steps taken to reach a final
temperature-controlled fan with a temperature display. As
well as the conclusions drawn from the from the design and
creation process.

II. METHODOLOGY

The methodology of the project ultimately revolves

around a goal that must be accomplished and how each

group member can play a role in completing the task at

hand. When looking at the overall design of the

temperature-controlled fan, there are various sections of

code and hardware that ultimately create the end product

that is foreseen. The following divide up the project into

certain tasks that were later combined to make the project

whole.

A. WR Register

The WR register is specifically designed for the

ADT7420 temperature sensor. It has several internal

components such as two FSMs, parallel shift registers, a D

flip-flop and a pulse generator. Figure 1 shows in detail each

step that the data takes to reach the final output desired. The

FSMs specify the signals. One of them adjusts for high

pulse width in cycles of the clock frequency and the other is

an asynchronous signal that also specifies default values.

Figure 1. WR Register

The parallel shift register has the ability to alter directions. It

can shift the left from LSB to MSB or to the right from

MSB to LSB. In this case, when s_l is ‘0’ there is a shift

operation and when s_l is ‘1’ data is loaded. The D flip-flop

tracks the input and makes transitions that match the input

data. The flip flop then stores the value on the data line. In

this case there is an enable and when the enable is low, the

data remains unchanged. The pulse generator deals with the

cycles. It generates rectangular pulses instead of a constant

signal. It is important to note that the output of WR register

is a 16-bit temperature in two’s compliment. 9 of these bits

are integer bits and considered significant bits. The other 7

are fractional bits that are less significant.

B. Serializer

In general, serializers use the process of converting an

object into a stream of bytes. This stores the object or

transmits to save the state of the object. If the state is saved

the serializer can recreate it when it is needed. Figure 2

shows the serializer and its components in depth.

Figure 2. Serializer

For the project the serializer was used to get the

temperature on to the seven segment displays. So that they
read in degrees Celsius instead of 16 bits in two’s
compliment. The serializer is made up of a pulse generator
and a hex to seven segment decoder. It takes the 9 significant
bits from the WR register and outputs them as a temperature
in degrees on the seven segment displays of the Nexys 4
DDR. A binary to BCD converter was also added to get the
display to show in proper decimal form. The converter was

placed so that the output from the temperature sensor is
converted and then connected to the input of the serializer.

C. Temperature I2C

The temperature I2C is the top file of this entire

temperature sensor to display operation. It encases each

component and delivers data through a string of code to give

the final requested display. As previously mentioned, the

WR register and serializer are two major components.

However, there are also two registers that store data at the

end of the configuration. There was a signal added to get rid

of the fractional bits that are not important for this project.

The two bytes that make up the 16 bits of data. This data is

mapped to the signal. The first 9 bits were used and the

other 7 were not. These 9 bits were then port mapped to the

inputs of the binary to BCD converter. After being

converted into a binary number the serializer decodes and

displays the bits.

D. Pulse-Width Modulation via Linear Interpolation

Once the 9-bit temperature data is obtained from

the serializer, it is to be interpreted as signed. That given, if

the MSB of the bit string is ‘1’, then “0000” is written to the

signal “duty” as this indicates a negative ambient

temperature. If no switches are activated, then the duty cycle

is dictated by the input temperature and linearly interpolated

between 21 degrees Celsius (the minimum temperature) and

32 degrees Celsius (the maximum temperature). Any lower

than 21 degrees Celsius and the duty cycle is 0% (0000), but

any temperature 32 degrees and higher produces a duty

cycle of 100% (1111). The resolution of the duty signal, in

our case, is four bits because higher resolutions are not

needed for the purposes of this project. Also, it will be

easier to differentiate between different duty cycles from

how quickly the motor rotates. If there are switches

activated, then the temperature data is ignored and the state

of the switches is written to the duty cycle instead.

All the while, a clock input is controlling a 4-bit counter.

The counter increases by ‘1’ every time the rising edge of

the clock is encountered. So long as the accumulated value

of the counter is less than the value of “duty”, the program

outputs a logic high for the PWM value. But, when the

value of the counter exceeds the value of “duty”, the

program outputs a logic low for PWM value. This entire

process is repeated when the value on the counter is equal to

that of the period (the period, in this case, is “1111” just so

the counter can achieve its maximum value before it resets).

III. EXPERIMENTAL SETUP

The setup of the project was completed by creating

separate parts of the code that each group member worked

on and combining them. They were then tested to ensure

that they would run individually and correspond with the

hardware as needed. The software was eventually

implemented to work into the hardware and tested to make

sure important aspects like the values of temperature were

displayed properly on the board. Once certain temperatures

were able to be calculated through the hardware we were

able to focus on the fan. The next step was to get the fan

controlled by a DC motor to initiate after it exceeded a

certain interval of temperature. The debugging process was

crucial because sections of the code were worked on

separately and then pieced together to get the final desired

code. This created difficulty when exchanging the code and

making a final format that was sound with the creation that

was anticipated.

Once overcoming the challenges of creating an overall

system, it was important to perfect the code that was

existing to make the best version possible. We expected to

have the results that would give the temperature within the

display and ultimately activate the fan when necessary. This

created an editing process to clean up some of the code such

as getting the proper number of displays to turn on instead

of more or less. Some of the seven segment displays were

unneeded and more so unnecessary when it comes to

displaying the temperature. The fractional bits that output

from the ADT7420 are pointless in our situation therefore

these bits were dismissed. There are many more code

adjustments that were made similar to this to adjust the

output so that it was clean and precise.

IV. RESULTS

Ultimately, the design was successful in achieving our

goal of creating a temperature-controlled fan. When

analyzing the end product, the fan is able to detect the

surrounding temperature which is then directly displayed

within the 7 Segment display on the Nexys Board. Once this

is acquired, the fan activates and ideally serves the purpose

of lowering the temperature in a specific area as desired by

the user. Through the use of FSM’s, parallel shift registers,

and a variety of in class topics already showcased, the end

result is a configuration that consists of diverse material that

was acquired throughout the semester. The results were as

expected therefore the project works effectively and is able

to collect the data that is necessary for it to function all

while activating on its own. Overall, the results were as

predicted. The time spent adjusting code and certain

components made for a perfect explanation of what was

anticipated. We also used an oscilloscope to view the wave

form of varying duty cycles. We ran into the issue of

Vivado’s hardware manager shutting down at high duty

cylces. Seemingly we were drawing too much current from

the I/O pins so adding a larger resistor on the output of the

Nexys board helped

for most instances.

NEXYS 4 DDR

Temperature

Sensor

16 Bits

Serializer

Floor 7

Fractional Bits

9 MSBs

Seven Segment

Display

2's Compliment

Surrounding temperature

DC Motor with

Fan

PWM

TEMP > 32°C (90°F)

PWM <= '1', 100% DC

TEMP < 21°C (70°F)

PWM <= '0'

Figure 3. Block Diagram of Temperature Controlled Fan

Figure 4. Block Diagram of Temperature Sensor

Figure 5. Block Diagram from Vivado (Left)

Figure 6: Pulse-Width Modulation System

CONCLUSIONS

Overall, the project displays the real-world applications

of the topics covered throughout the course. Through the

implementation of the various software and hardware

applications, the project is able to grasp the complexity of

how the two function together to ultimately achieve a goal

that is desired. The debugging process as well as

experimenting with ways to implement unique a design,

allowed groups to work together and achieve something that

could not be done alone. The fan ended up working as

desired and our group was satisfied with how the end result

came out. If there is one thing that could be changed to

better the outcome of this design it would be altering the

code, so that if there was a negative temperature the display

would show a negative sign. Nonetheless, this is a fan that is

meant to cool things down in hot temperatures. Therefore,

for this case the negative temperature is not included. Given

more time this would be the first thing added so that the

display is entirely correct in all temperatures.

REFERENCES

[1] Digilent.(n.d.). NexysA7referencemanual[Reference.Digilenti
nc]...DigilentttDocumentation
[Reference.Digilentinc]. https://reference.digilentinc.com/refe
rence/programmable-logic/nexys-a7/reference-manual

[2] Llamocca, D...(n.d.). VHDL..coding..for
FPGAs. https://www.secs.oakland.edu/~llamocca/VHDLforF
PGAs.html

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

