
Alarm Clock

2700 Group Final Project

List of Authors (Calvin Yousif, Dave Pattison , Blake Baxter, Paolo Nikaj)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: calvinyousif@oakland.edu, dapattis@oakland.edu, pnikaj@oakland.edu, bjbaxte3@oakland.edu

ABSTRACT

We are creating an alarm clock using the
Nexys A7 board and Xilinx Vivado software
to create our files and compile them
together. The purpose of the project is to
create a 24-hour clock that can have both
time and alarm set by the user. This project
will combine design and analysis of
combinational and sequential logic circuits
with a constraint file that will connect the
alarm clock to specified switches and
buttons to result in a fully functional alarm
clock.

I. Introduction
When the clock is in run mode current time
is displayed on the 7-segment screen. A
verbal message “RISE” is displayed and a
buzzer goes off when alarm time is
triggered. The center push button disables
the alarm. A switch is used to select
program mode for setting current time and
the center push button is used to save current
time. Once current time is set another switch
is used to select program mode for setting
alarm time. In the program mode minutes
and hours are displayed and the Up/down
buttons change the values and Left/right
buttons change the position. The selected
position flashes to give visual
confirmation.The internal timer is desigin
function is based on just the number of
minutes in a daya and by doing this allows
for simple math operation to adjust time.

The Project covers the topics of registers,
counters, case statements, finite state
machines, boolean logic, port mapping, and
design and analysis of combinational and
sequential logic circuits.

II. Methodology
For this project it is recognized that there

was a process for the clock, 7-segment
display, button functionality and top loop.
Each process is written out with a diagram
to understand how the circuit will work
based on bit value. For complete
functionality we have decided to run a clock
counting by seconds and minutes which will
then display the minutes onto the 7-segment
display. A switch will be used to set the
clock into program mode which in turn will
allow the user to use push buttons to input a
number (in minutes) for each display then
the user will use the center pushbutton to set
the clock. A maximum of 1440 minutes is
allowed to be entered by the user else the
clock will reset to zero.

A. Programmer
The initial challenges were with the button
process on how to handle the bit flow for
updating individual time registers along with
checking that a user doesn’t try to enter a
value outside the 1440min (24hour) range.
Addressing this issue a check bit with the
vector value of 1440min is used to compare

a variable (TimeBuffer) that is incremented
by the user. To simplify the incrementing of
the TimeBuffer variable a counter using the
position bit with specific values was used.
The values of each position represent the
specific amounts of time in min within a
24hour period such as flashpositionINT =1
incuramented 1min, flashpositionINT = 2
incuramented 10min, flashpositionINT =3
incremented 60min, flashpositionINT =4
incremented 600min. This design offered the
user the most efficient way to achieve the
desired set time or alarm time. From this
point the next design question was how to
control the position bit and value bit with the
push buttons. Initial design was to use a
standard rising clock edge and bitcoutner ,
but with that design it was found that a
debouncing and clock divider circuit would
be needed. In later research it was found that
just the use of sequential if statements
would achieve the same results without the
use of the clock divider simplifying the push
button design to its current state. Other
solutions were considered for this problem
such as using a N_bitcounter that could be
used to handle each vector position
individually but with this design came the
challenge of controlling the 1’s place in the
hours position. It was found that because
there are two different value ranges to
consider and other obstacles it was found to
be needlessly more complex than the first
design solution. With the set_Alarm it was
determined that the alarm value is a unique
bit value within the range of the clock. From
a simple comparison operator it would make
it simple to define when the alarm goes off
and on.

B. ClockCount
The clock uses a counter that will first
increment by 1 second then increment
minutes respectively until the 1440 minute

mark hits, this equates to 24 hours in
minutes. The minutes will then reset to zero
and continue counting. The challenging part
of this section is adding in additional signals
that will allow the user to set the time and
start it at that specific time. This took
unexpectedly more effort in making sure the
inputs were mapped correctly while
converting integers to standard vectors, due
to the lack of online resources. Further
research led to a parallel load counter that
was used with another counter to make a
clock that counted normally with a trigger
that sets the minute variable to be updated
then started at the user inputted value. Three
inputs, one output and a couple of
components were used to design the clock
counter. This will result in a single output
variable clock, a counter drives the clock
that can be updated by input from the
programmed values. The counter driver and
the input variable will both feed out using
the output variable which will be displayed
on the 7-segment display. Making the clock
solely a minute variable allowed the code to
be slightly simplified with a greater
efficiency when connecting the variable
through the top file. This representation also
eliminated the amount of warnings given
through the error messages on vivado of
potentially creating open latches which
would have led to greater issues once the
different sections of the project were all
brought together.

C. DisplayDriver
A key element in this project is the display.
The display will be on at all times and will
show the output of the clock as time passes
by. There are three main modes of function
for the display. While the clock is in regular
display mode, it just shows the current time.
Once the program is switched to set the time
by using the first switch on the board, then

the display will adjust to give us feedback.
When it is in set time mode, the display
flashes the corresponding display position
that is being adjusted to set the time. When
the switch is turned off, then it goes back to
displaying the set time. When the second
switch is turned on, the display changes to
allow the user to set the time using the
buttons to navigate. Once the second switch
is turned off, then the display will go back to
displaying the current time. Finally, once the
alarm time is reached, the display will then
switch from displaying the time, to
displaying “RISE” until the reset button is
pressed. The method used to achieve this
was done by using a Moore-type finite state
machine (FSM), which uses 4 states to cycle
through the 4 displays to keep them running
and displaying at the same time. To keep the
lights on and displaying brightly and
properly, a component was used to generate
a pulse at the right speed. Another
component was created to make the displays
flash on and off by using the clock and
pulsing at a set speed for an on and an off
signal. To switch the modes of the display,
processes were made using “if” statements
to account for what we want displayed and
when to display it. A lot of testing and
debugging went into this part. The values of
the count on and off for the blinking feature
was fine tuned to display a nice timing for
the flashing of the display.

D. Topfile
The Topfile will route all variables to and
from other subroutines. The components are
port-mapped into the proper inputs and
outputs. The time values sent to the display
driver will come from either the
Programmer or Clockcounter subroutine
depending on operator conditions. The
operator conditions account for changes in
between the functions of the alarm clock.

The Topfile will compare the alarm time to
the current time to decide when to trigger
the alarm. This is done by using
“if-then-elseif” statements. This was done to
account for all the possible cases to ensure
that the alarm clock functions properly in
each mode that it is in. It was difficult at
first to create a memory bit to make sure that
the alarm does not continue to go off after
being disabled while the compared time
values are still the same. To solve this
problem the memory bit was added to the
process that is used to control the different
clock modes which allowed for the storage
of the set time values depending on the
position of the switches.

Experimental Setup
The use of Xilinx Vivado software is used to
verify that circuit is syntax vhdl free and to
simulate each component. The project tested
on a Nexys A7 board (xc7a50tcsg324-1)
allowing for physical verification of
functioning processes.

Results
The results were a 24 hour clock that
displays current time on the 7-segment with
the option of setting an alarm and current
time. The buttons and switches function as
expected. But one thing that was unexpected
was the colon on the display is not
functional according to the datasheet. One
interesting result was recognizing that the
clock has both a mealy and moore finite
state machine functions. When the clock is
in run mode it functions as a moore machine
(there is no input directly fed to the output
logic) but when the clock is in program
mode you are directly feeding the inputs to
the output logic of the clock acting like a

mealy (FSM). The end result is an alarm
clock that is well put together and thought
out with the maximum and minimum values
and the ease of use to prevent user error in
any way.

Conclusions
The key takeaway from working on this
project is that there are multiple ways of
coding, except there are challenges that you
might not have considered and verify your
logic is sound before coding. Furthermore,
doing the work independently on each
section of the project can make it very
challenging to bring together when design
ideas are not fully flushed out. All the bugs
were sorted out and after many hours spent
by the group, the project came to become a
success. A lot was learned through this
process, both in programming using VHDL
and also in teamwork.

References

[1] Daniel Llamoca Obregon, serializer
7-segment display. (2013) Retrieved from
http://www.secs.oakland.edu/~llamocca/VH
DLforFPGAs.html

[2] Examples of VHDL Conversions.
(n.d.). Retrieved April 17, 2020, from
https://www.nandland.com/vhdl/tips/tip-con
vert-numeric-std-logic-vector-to-integer.htm
l

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.nandland.com/vhdl/tips/tip-convert-numeric-std-logic-vector-to-integer.html
https://www.nandland.com/vhdl/tips/tip-convert-numeric-std-logic-vector-to-integer.html
https://www.nandland.com/vhdl/tips/tip-convert-numeric-std-logic-vector-to-integer.html

Diagrams and Simulations

Pushbutton simulation: This shows how the program records each button press

Clock simulation 1: This is a representation of the counter incrementing the minout value by one

Clock simulation 2 : The once the counter reaches max value the minout resets to zero

Display simulation: This shows the S and AN outputs which display the number on the seven segment display
and the position respectively. The AN shifts to keep all 4 of the displays illuminated.

