
Ultrasonic Sensing

Using an ultrasonic sensor to measure distance

List of Authors (Nguyen Phan, Nicholas Yang, Ayoub Kakish, Alex Alnajjar)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: Nphan@oakland.edu, Nicholasyang@oakland.edu, Akakish@oakland.edu, alexalnajjar@oakland.edu

Abstract—The object of this project was to design a way to use

the ultrasonic sensor with VHDL and the Atrix-7 board.

Ultrasonic sensors are becoming more relevant today because of

the ease of implementation and effective use. What was found

was the code could be written to successfully gather distance

readings from the ultrasonic to the Atrix-7 board.

I. INTRODUCTION

 Ultrasonic sensors are simple trigger and echo

devices that output a pulse which measures distance. The

trigger outputs a pulse which will eventually bounce off

the object the operator wishes to measure the distance of.

The echo will then have that bounced back pulse and

input that information. This concept is useful because

now the operator can measure distance of an object

continuously. This concept can be used in the automotive

industry to alert a driver when they are backing up and

getting too close to an object such as another car. This

small alert system can decrease the amount of collisions

in a parking lot dramatically while also not costing the

manufacture so much as ultrasonic sensors tend to be

cheap to produce. Figure 1 shows the ultrasonic sensor

used in this project.

Figure 1: HC-SR04 Ultrasonic Sensor

 The scope of this project is basically to interface

the ultrasonic sensor with the Atrix-7 board. The should

detect an object and the width of the echo pulse should be

measured. The measurement will be calculated in cm and

displayed on two seven segment displays on the board.

Figure 2 shows the FPGA board used in the project.

Figure 2: Artix-7 FPGA Trainer Board

Methodology

A. Ultrasonic sensor

 To design and implement a system to measure

distance, one must first understand the ultrasonic sensor

and how it works. The sensor is comprised of two main

components and in this project the sensor used has four

pins. The trigger and echo are the main pieces of what an

ultrasonic sensor is. The sensor will receive a pulse at a

minimum of 10µs from a microcontroller, such as an

Arduino, which will indicate the sensor to output a pulse

via the trigger. The trigger sends 8 pulses at 40kHz so that

the reflection is expected. That pulse will travel through

the air until it reaches the object of interest. That pulse

will hit the object and bounce off, returning the sensor.

Here, the echo will receive that signal which will be

implemented in the code to output a useful measurement.

Enable conditions to consider is the air temperature and

velocity of sound. The way the pulse travels through the

air dictates the amount time that pulse take to reach the

object and return to the echo. The speed sound travels at

is 343 m/s and room temperature are usually around 20°C

(68°F). Figure 3 shows the pulses generated by the sensor.

mailto:Nphan@oakland.edu
mailto:Nicholasyang@oakland.edu
mailto:Akakish@oakland.edu

Figure 3: Ultrasonic Sensor Pulses

 The circuit used to hook the sensor to the board

is very simple. The source of voltage to power the sensor

will come from an Arduino board since is can output 5

volts and it also has many pins to use for ground. A small

bread board will also be used to hook the sensor, the

power and ground from the Arduino, and the interface

from the Atrix-7 board including ground. Since the sensor

uses 3.3 volts, a voltage divider will need to be made to

ensure that the board is safe from over voltage.

B. VHDL Code

The logic circuit that makes up the system to measure

distance in this project contains three counters, BCD

converter, HEX to Seven Segment Converter, 2 seven

segment displays in centimeters, Finite State Machine and

the calculator to perform the distance calculations.

The FSM is the main controller of the circuit which

generates the trigger for the sensor. The FSM used in this

project contained seven states which, once the sequence

was completed, returned to state 1. Figure 4 shows the

complete finite state machine.

Figure 4: FSM

 While in state 1 Trig is 0 while sclrC and EC are

1. If ZQ equals 1, then the FSM goes to state2 where Trig

is equal to 1. If ZQ equals 1, then EQ and sclrQ are also 1

and it moves to state 3. In state 3 Trig is equal to 0 again

and ET is now 1. Once ZQ is 1 again the machine moves

to state 4 where ET is 1. Now we are looking for when echo

is equal to 1. Once this happens the state machine moves

to state 5 and will remain if echo is 0. In this state when

echo is equal to 0, EQ is 1 as well. Now when echo goes to

1, EC is now 1 and the machine goes to state 6. In state 6

ET is 1 and if echo is 0, it will keep state 6 and EQ will be

1. Once Echo is 1, then the machine moves to state 7 and

now done is equal to 1. If ZT is 0, then ET is a and we stay

in state 7 and done is still 1. Once ZT finally is 1 the state

machine goes back to state 1 and the sequence starts over.

Three counters were used for this project. The first

counter was used to count the echo-width. The reason for

this is that the eacho-width represents the time that the echo

takes to return to the sensor. This echo-width was then

inputted into the Distance Calculator to convert that width

into centimeters. The other two counter were used to

synchronize the trigger. One clock would control the

trigger every 10µs which was the pulse output from the

sensor. The last clock was the delay in the trigger pulse.

The trigger needs time to bounce off the object and come

back into the emitter which why this clock is needed.

Initially 60µs was used, but this was too quick and made

the display flicker too much. In order for the display to

remain clear 800µs was used which fixed the issue. .

 The distance calculator is where the echo width from

the modulo-counter will be converted into cm. The

equation to find the distance in cm is given by

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑚) =
𝑒𝑐ℎ𝑜𝑤𝑖𝑑𝑡ℎ(µ𝑠)

58
. Once this number is

calculated in will move on to the BDC converter. However,

in the board that time will be in Nanoseconds, so the

equation needed to be modified. To convert to

Nanoseconds the echo-width needs to be divided by 1000

to get µs. It also needed to modify the equation by

multiplying by 1/5800. The reason for this was because in

VHDL it is difficult to divide numbers so we just multiply

by the inverse.
1

5800
 is equal to 1.724*10^-4 which is a 20

bit number. Multiplying echo-width, which is a 22 bit

number, and 1.724*^-4 will yield a 42 bit number.

However, only the first 9 bits before the decimal point will

be used to display the distance on the seven-segments.

Once the distance is calculated in the component

Distance Calculator, the BDC Converter will take that 9 bit

number and convert it to a BCD number. This BDC number

will be used to convert into the seven-segment display

through the Hex-to-Seven-Segment component.

Once the code was complete and the project was

working correctly, there was an issue that needed to be

addressed. The display would display the distance the

sensor was calculating just for about a minute and then only

read zero. To fix that, a D flip flop was added and once

that update was tested the project worked 100% correct.

C. Results

To demonstrate how the ultrasonic sensor

worked, we decided to use a seven-segment display to

illustrate the distance between the sensor and object. The

seven-segment will be displayed in hex. As the object

moves farther or closer to the sensor, the seven-segment

display will simultaneously measure the distance showing

us how far the object is. Overall, the result of our final

project was a success, the ultrasonic is working as it is

intended to.

 Here is the simulation of the code. Please note

that the simulation doesn’t reach state 7 and reset

because there was not enough time. In the final

implementation, there time was extended and the code

was complete.

D. Conclusion

Our team faced many setbacks while working on

the final project mostly due to the calculations and timing

of the echo pulse input. Once the timing was correct, the

rest of the project went very smooth. We used many

aspects from our class lectures and labs in order to create

and design our final project. We incorporated a finite

state machine, counters, decoders, d-flip flops, and 7

segment display. We also made some original VHDL

code measuring the time values from the proximity sensor

into distance. The most important thing our team learned

from this project was how to synchronize the finite state

machine with multiple counters.

