
Simple Calculator

Jacob Arabbo, Anthony Barbera, Dante Gomez, Quinn
Krause

Idea/Process
Create a simple unsigned calculator
consisting of 4 basic operations.

Addition, Subtraction, Multiplication,
Division.

If subtraction result is negative, we
output --.

When dividing, remainder shown in
LED’s.

3 anode
7-segment
displays

Reset
button

Division
Remainder in
binary

Input A

Input B

Enable

Selector

Block Design
4-Bit Adder/Subtractor

Adder

● Adds the 4-bit values A and B
● Takes the 4 bit sum and adds

“0000” to create an 8 bit value
allowing it to work with the
remainder of the calculator

Subtractor

● Takes A minus B in order.
● MUX takes the cout value to

determine whether the output is
going to be negative, then uses this
output as an auxiliary input to the
hex2sevenseg decoder.
○ Cout = 0 results in negative

Block Design
(cont.)
4 Bit Multiplier/Divider

Multiplier

● Takes A and B as inputs for both
● Uses AND gates to perform

boolean multiplication for the two 4
bit inputs

● Outputs 8 bit result

Divider

● Takes A divided by B in order
● Lab 6 based design
● Input from A is given leading zeros

to produce 6 and bit values
respectively

Block Design
● Modulo Counter: 0 to 2

● Purpose: T~1.3ms, every tick
increases the output by 1. The output
is a 2 bit signal used for the select
lines of the 2 MUXes that determine
which digit and respective anode is to
be active.

FSM
The FSM is used to control which anodes will be allowed
to be on when the clock cycles through. We only want to
display some zeros. For example: if the result of the
calculation is 1 then we want to display ‘1’ instead of
“001”. On the contrary, if the result is 100, then we want
to display those trailing zeros. The FSM basically filters
out unwanted leading zeros based on whether the more
significant digits are nonzero or not.

The MUX following the FSM can be thought of as a filter
for the anodes. As the select line changes value, the MUX
will allow through one anode value at a time, whether it
be ‘1’ or ‘0’.

ord1 <= or digit1;
ord2 <= or digit2;

These variables determine whether there is a
nonzero value in each of the more significant
digits by ORing each bit of the digit together.

with s select
 ans <= anFSM(7 downto 3)&"11"&anFSM(0) when "00",
 anFSM(7 downto 3)&'1'&anFSM(1)&'1' when "01",
 anFSM(7 downto 2)&"11" when "10",
 "11111111" when others;

Demo
9+3=12

4+15=19

10-5=5

5-10=--

10x10=100

8x9=72

13/4=3 R1

9/5=1 R4

