
FPGA Tic Tac Toe Game with VGA Display

List of Authors (John Akroush, Nicholas Wheelis, Tao Wang)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: johnakroush@oakland.edu, nwheelis@oakland.edu, taowang@oakland.edu

Abstract—

I. INTRODUCTION

Tic Tac Toe is a staple pastime for people to play with
friends when they are bored. The project covers registers,
decoders, multiplexers, addresses, and time with clocks.
We will learn how to display code to a VGA display during
this project. We use sw0-1 as the player/color selection,
sw2-sw5 as the address, and register 0-8 translates to
squares 1-9 respectively.

Fig 1: Tic Tac Toe board

II. METHODOLOGY

Fig 2: Circuit Diagram

 The general idea was for our group to recreate the tic
tac toe board game using a FPGA board and display it
using a VGA display. A decoder with enable is used to
decide which register to access. Each register corresponds
to one spot on the tic tac toe. The register passes the
player value through to a block of if statements, if the
specific register is chosen by the decoder output. This if

statement block handles the color assignments for each
rectangle; red for player one and green for player two. If
the register has not been accessed previously, or if it is
currently not being accessed, then the if statement block
tells the circuit to color the corresponding rectangle black.
The color value output from the if statement block is sent
to a 3 to 1 multiplexer that associates each value to one
12-bit binary value for its corresponding color. For
example, player one, which has a value of 01, is assigned
to the color red (F00). The output color of the multiplexer
is sent to the code for the VGA display. The VGA code
scans through each pixel from left to right and top to
bottom starting with pixel 0 of the display region. It sends
the location value of each pixel, HC and VC, to the if
statement block which uses those to determine the color
for each rectangle. The VGA code also colors any non-
display region black, otherwise it would not work.

A. Decoder

Fig 3: Decoder with Enable

The decoder is the first part in the design. It takes user

inputs for the address and enable. It uses the inputted
address from sw2-sw5 to decide what register that the
player stores their color into. The player will use the switch
to enable the system to store the color into the selected
register. For example, if player 1 puts in the address
“0011”, and presses enable, then register 3 will have the
color red stored.

B. Registers

Fig 4: Registers with Enable

The registers are the second part of this design. There

are nine registers that are used. They are used to store the
color which is selected by sw0-1. They are enabled by the
decoder. They are an integral part of the design because
they store the color for the player for the rest of the game
until the resetn button is pressed which clears all the
registers and restarts the game. For example, the decoder
uses its inputted address, say 0111, to select a register,
register 7, and enables it which saves din, 01, which is red,
to the register.

C. Multiplexer

Fig 5: Color Multiplexer

 The multiplexer in this design is used to decide the color
the VGA controller will display. After the if statement
decides the color, it sends the 2-bit selection to the mux to
have it output whatever color has been decided. For
example, if s_color is 01 then the mux will output the 12-
bit code for the color red.

D. If Statement Block

Fig 6: If Statement Block

 The if statement block is a combination of if statements
that depend on each of the registers output as well as the
HC and VC outputs from the VGA controller. The if
statements go through and pick what register to use and
what its output is based on how each register is connected
to a certain range of the display that is inputted from the
HC and VC inputs. It outputs a 2-bit signal that is an input
to the Multiplexer.

E. VGA Controller

Fig 7: VGA Controller

 The VGA controller is used to take the inputs from the
rest of the design and display them onto the display being
used. It does this in tandem with the multiplexer and if
statement block. The controller sends two 10-bit signals
called HC and VC outputs to the if statement block. It starts
out with 0 and 0 which is the first pixel and would connect
to a certain color based on the if statements and would go
through every pixel doing the same. This is how displays
work as they go row to row, left to right determining the
color of each pixel until you have an image. This
continually refreshed so it is constantly updated. For

example, if the HC was 10 and VC was 10, this would be a
pixel in the top left rectangle, which, in the if statement
block, is associated with register 0. This would make that
pixel the corresponding color of the player playing.

III. EXPERIMENTAL SETUP

Vivado 2018.3 software was used to program a Nexys
A7 FPGA board with the tic tac toe program. The Nexys
A7 was connected to a display via the VGA port using a
VGA cable. It was expected that the display would work
flawlessly. Once the code was complete and perfected, the
display worked as we expected.

IV. RESULTS

Video of the project working:
https://www.youtube.com/watch?v=oqcOLH1gtnc&t=3s

Fig 8: Tic Tac Toe Game Display

Above is a video and picture showing the tic tac toe

project in action. As seen in figure 8, colored rectangles,
corresponding to each player (player one is red, while
player two is green), are displayed on the screen in the
player chosen locations. These locations are chosen by the
if statement block that sets a certain horizontal and vertical
pixel range (HC and VC from the VGA Controller) to each
register. If a specific rectangle (aka register) is selected via
the address input by the user, then the color for that player
is applied to that register. The player number is sent to the
color multiplexer which chooses the player’s color and that
color is sent to the VGA Controller which displays the
color in the rectangle location.

We encountered several issues during the creation
process that allowed us to gain a deeper understanding of
the topics. One issue was figuring out exactly how the
VGA Controller code works. We created multiple versions
of the if statement block code that applied to the different

misunderstandings of the VGA code. The current code is
the correct application of the VGA Controller code.
Another error we ran into was when we were attempting to
test the project after it was ‘completed.’ We connected the
FPGA to the display and we received an error on the
display that said, “The current input timing is not supported
by the monitor display. Please change your input timing.”
To troubleshoot the issue, we tested our project with
multiple different monitors, but we got the same error. We
eventually resolved the error in the code by changing the
clock pixel ratio to the same value across all code files (100
MHz). After solving this issue, the tic tac toe project
worked flawlessly.

The tic tac toe using an FPGA and VGA display project
helped us get a deeper understanding of in class, as well as
other, topics. We all gained experience using VHDL in
Vivado, FPGA’s, troubleshooting, and VGA displays.

CONCLUSIONS

The main take-away from creating this project was to
apply the knowledge obtained from the course to a real life
project. The topics used that were learned from the course
include decoders, registers, enable, Vivado with VHDL,
FPGA, if statements, and multiplexers. This project also
taught us more topics than what were covered in the course,
such as displaying to a VGA display. In terms of what can
be improved with the project; given more time, we could
add a feature that checks if a space is already taken to make
sure the player can't choose the box that already has color.
We can add something to determine which player wins and
reset automatically. We could also add a scoreboard to
keep track of each player’s wins.

REFERENCES

- Professor Daniel Llamocca’s VGA Controller
code.

