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Abstract​— A binary-coded decimal (BCD) to binary converter        
was designed and implemented using VHDL and an FPGA.         
Architecture consisted of control and datapath circuits,       
reproducing the reversed Double Dabble algorithm in       
hardware. In addition, the scalable nature of our architecture         
would allow modification of the converter to accommodate an         
increased BCD input size without a change in design         
philosophy. 

I. INTRODUCTION 
This report will cover the algorithmic expressions,       

VHDL language implementation, simulation results and      
FPGA results of a 3 digit BCD to binary conversion          
architecture. The inputs will be controlled by switches on         
the FPGA board and the output will be displayed on built-in           
LEDs. 

BCD is an efficient way of encoding binary numbers.         
Every four bits of a BCD number represents a single-digit          
binary number that holds the place of the decimal number it           
represents. The number is interpreted from left to right, with          
the hundreds position represented by the most-significant       
nibble and the ones position represented by the        
least-significant nibble.  

BCD is commonly used as address numbers for        
computer memory. BCD format is also common in        
electronic systems where numeric digits are displayed, as        
well as in systems where the rounding and conversion errors          
introduced by binary floating point representation and       
arithmetic are undesirable.  

 
 

II. METHODOLOGY 

A. Design Overview 
The project uses the reverse double-dabble algorithm to        

convert a number from BCD to binary. This algorithm         
involves a series of shifts and checks. The 12-bit input BCD           
is initially shifted one position to the right with the          
least-significant bit (LSB) becoming the most-significant bit       

(MSB) of the output binary number. Each of the nibbles of           
the newly-shifted number are then checked to determine if         
either is greater than seven. If the nibble in question is           
greater than seven, three is subtracted. The updated BCD         
number is then shifted, with the LSB once again becoming          
the MSB of the binary output. This process repeats eleven          
times. Figure 1 demonstrates how the process would be         
performed manually to convert the decimal number 175        
from BCD to its value in binary. 

 
Figure 1: Example of the double dabble algorithm  
 
This algorithm was implemented using a control circuit        

and a datapath circuit. The control circuit was built using a           
finite state machine. The outputs from the control circuit         
were used as signals in the datapath circuit, which included          
twelve input switches, two shift registers​, multiplexers, a        
counter, subtractors and a simple-circuit comparator. The       
result of the conversion was displayed with the built-in         
LEDs on the NEXYS board. The range of valid BCD values           
is 0000 0000 0000 - 1001 1001 1001.This design was          
written in VHDL.  
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Figure 2. State machine diagram of control circuit 
 
B. Control Circuit 

Figure 2 depicts the state machine that controls the         
system. In State 1, the system idles until it receives notice           
from the input signal S, which is controlled by a switch on            
the board. When the switch is set to high, the load L and             
enable E of the BCD shift register are set to high, causing            
the input from the switches to load into the shift register and            
shift once.  

Now in State 2, the output of the counter ZC is checked.            
If the output is low, the conversion is not complete and the            
MSB of each nibble is checked to determine if it is greater            
than seven. These outcomes are represented by the signals         
C3, C7, and C11. A signal of low sets enable, load, and the             
binary shift register enable Ebin to high to shift from the           
BCD register into the binary register. The counter enable         
EC is set to high with each shift.  

When a comparator signal is high, State 3 is entered.          
Load and enable for the BCD shift register are set to high as             
is the selector for the multiplexer that controls whether the          
original or subtracted bits are used as the load. With this, the            
updated BCD number is loaded into the shift register and          
shifted. The Ebin is set to high after the subtraction,          
allowing for the LSB of the updated BCD number to shift           
into the MSB position of the binary number. Each time a           
shift occurs, the counter is enabled as EC is set to high. 

Otherwise, if the output of the counter is high, the          
system transitions to State 4. When ZC is high, the          
conversion is complete and the selector to the output         
multiplexer is set to high, causing the converted number to          
be displayed with the on-board LEDs. The system then         
returns to State 1, idling until S transitions from low to high.  

 

 
Figure 3: BCD to binary datapath schematic 
 
 
C. Datapath Circuit 

Figure 3 depicts the datapath circuit used in the design,          
which consisted of twelve switches, two shift registers​,        
multiplexers, a counter, subtractors and a simple-circuit       
comparator. The input from the switches serves as one of          
the inputs to a multiplexer that determines what the parallel          
load into the BCD shift register will be. ​The other input to            
the multiplexer is the result of subtracting three from the          
BCD nibbles. When the selector sL is high, the altered BCD           
becomes the parallel load when both load L and enable E of            
the shift register are high.  

To determine if the nibbles of the shifting BCD are less           
than seven, each nibble’s MSB is compared: if it is one, the            
nibble is greater than seven. The MSBs serve as selectors to           
two multiplexers, each with two inputs: the unaltered        
nibbles and the subtracted nibbles. When the MSB is one,          
the subtracted value becomes the output. These nibbles get         
concatenated to create the adjusted BCD. This is the         
adjusted BCD number that becomes the parallel load to the          
BCD multiplexer when sL is high. 

With each clock tick, one bit is shifted out of the BCD            
shift register and into the binary shift register. This value          
becomes the MSB of the converted binary number. 
 
 
D. Project Revision Process 

As experiments and tests were conducted on the various          
components, we learned more about the inner-workings of        
the BCD to Binary converter. Each component was        
debugged individually before being incorporated in the top        
file. After debugging, we were able to run the project          
simulation and check for design errors. One notable change         
to the design was when expanding the algorithm to work for           
a 12-bit BCD input. The original double dabble algorithm,         
which accounts for a an 8-bit BCD input, requires that the           



least-significant nibble is checked for values greater than        
four. In our model, each of the nibbles are checked for           
values greater than seven. This change occurred because of         
the addition of the four bits that represent the hundreds          
place in decimal. The revision process also allowed us to          
identify an error in the subtractor circuit. This was corrected          
by revising and checking the Karnaugh maps used to create          
the circuit.  

Revising the project inspired new ideas about       
controlling the system more efficiently, one such idea being         
to use a switch to control when the BCD input is loaded into             
the system. The position of the Load switch serves as the           
signal S in the finite state machine in Figure 1. Manually           
controlling when the system should begin the conversion        
assures that the process will begin correctly.  

A simulation followed each alteration to ensure that the         
outputs were being computed as expected. 
  

III. EXPERIMENTAL SETUP 

The setup we utilized first to verify the functionality of          
our project is a testbench in Vivado. The timing diagram          
produced from the Behavioral Simulation of the architecture        
served as a tool to guide us through the process of           
debugging. By analyzing each component’s contribution to       
the outcome, we were able to identify when and where          
problems were occurring.  

We then implemented our design on the NEXYS 4          
DDR board, as seen in Figure 4, using twelve switches for           
the BCD input and eight LEDs for the binary output,          
starting with the least significant bit on the right for both the            
input and the output. The two leftmost switches were         
designated for Resetn and Load.  

We verified that the conversion is performed correctly        
with experimental values on the test bench and then we          
input our own values with the implemented design on the          
NEXYS board. The expected result was a fully functioning         
BCD to binary converter.  

 
Figure 4: NEXYS 4 DDR board experimental setup 

 
 

IV. RESULTS 

We were ultimately able to successfully convert a given 
BCD number to binary using the code we developed in 
VHDL. Consistently, the expected binary number was 
displayed on the built-in LEDs given any BCD input from 
000-999, indicating that we had translated the algorithm into 
digital logic correctly.  

Our greatest discovery from designing and implementing 
BCD to binary conversion architecture was the hidden 
complexity of a seemingly simple algorithm. One such area 
of unexpected complexity was in replacing the BCD input 
with the subtracted BCD when a given nibble is greater than 
seven. The initial design made the modification bit by bit 
but was not yielding correct results. This issue was resolved 
by incorporating a multiplexer with two inputs: the 
unaltered BCD and the altered BCD. Making this 
modification broadened our understanding of shift registers 
and how their load inputs can be manipulated to yield the 
desired results.  

Designing architecture yields concrete results due to only 
using digital signals. Though the results can deviate from 
expected, there are never inconsistencies. This can be 
contrasted to developing a system that requires analog input. 
Analog data requires quantization, adding steps into the 
process that could produce errors. Working with a purely 
digital system avoids these issues, allowing for a deeper 
exploration into what can be created with digital logic.  

 
 



CONCLUSIONS 

A BCD to binary converter was successfully       
implemented on an FPGA. An input of 3 BCD digits was           
efficiently converted into a 10 bit binary output. In addition,          
the scalable nature of our architecture would allow        
modification of the converter to accommodate an increased        
BCD input size without a change in design philosophy. 

Through completing this project, the group gained       
substantial experience in the design of digital systems,        
VHDL coding, and use of the NEXYS-4 board.  
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