
BCD to Binary Converter

List of Authors (Emma Atkinson, Kiera Woodward, Alex Rolling, Brandon Furdock)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: ​eatkinson@oakland.edu​, ​kbwoodward@oakland.edu​, ​arrolling@oakland.edu​, ​bdfurdo2@oakland.edu

Abstract​— A binary-coded decimal (BCD) to binary converter
was designed and implemented using VHDL and an FPGA.
Architecture consisted of control and datapath circuits,
reproducing the reversed Double Dabble algorithm in
hardware. In addition, the scalable nature of our architecture
would allow modification of the converter to accommodate an
increased BCD input size without a change in design
philosophy.

I. INTRODUCTION
This report will cover the algorithmic expressions,

VHDL language implementation, simulation results and
FPGA results of a 3 digit BCD to binary conversion
architecture. The inputs will be controlled by switches on
the FPGA board and the output will be displayed on built-in
LEDs.

BCD is an efficient way of encoding binary numbers.
Every four bits of a BCD number represents a single-digit
binary number that holds the place of the decimal number it
represents. The number is interpreted from left to right, with
the hundreds position represented by the most-significant
nibble and the ones position represented by the
least-significant nibble.

BCD is commonly used as address numbers for
computer memory. BCD format is also common in
electronic systems where numeric digits are displayed, as
well as in systems where the rounding and conversion errors
introduced by binary floating point representation and
arithmetic are undesirable.

II. METHODOLOGY

A. Design Overview
The project uses the reverse double-dabble algorithm to

convert a number from BCD to binary. This algorithm
involves a series of shifts and checks. The 12-bit input BCD
is initially shifted one position to the right with the
least-significant bit (LSB) becoming the most-significant bit

(MSB) of the output binary number. Each of the nibbles of
the newly-shifted number are then checked to determine if
either is greater than seven. If the nibble in question is
greater than seven, three is subtracted. The updated BCD
number is then shifted, with the LSB once again becoming
the MSB of the binary output. This process repeats eleven
times. Figure 1 demonstrates how the process would be
performed manually to convert the decimal number 175
from BCD to its value in binary.

Figure 1: Example of the double dabble algorithm

This algorithm was implemented using a control circuit

and a datapath circuit. The control circuit was built using a
finite state machine. The outputs from the control circuit
were used as signals in the datapath circuit, which included
twelve input switches, two shift registers​, multiplexers, a
counter, subtractors and a simple-circuit comparator. The
result of the conversion was displayed with the built-in
LEDs on the NEXYS board. The range of valid BCD values
is 0000 0000 0000 - 1001 1001 1001.This design was
written in VHDL.

mailto:eatkinson@oakland.edu
mailto:kbwoodward@oakland.edu
mailto:arrolling@oakland.edu
mailto:bdfurdo2@oakland.edu

Figure 2. State machine diagram of control circuit

B. Control Circuit

Figure 2 depicts the state machine that controls the
system. In State 1, the system idles until it receives notice
from the input signal S, which is controlled by a switch on
the board. When the switch is set to high, the load L and
enable E of the BCD shift register are set to high, causing
the input from the switches to load into the shift register and
shift once.

Now in State 2, the output of the counter ZC is checked.
If the output is low, the conversion is not complete and the
MSB of each nibble is checked to determine if it is greater
than seven. These outcomes are represented by the signals
C3, C7, and C11. A signal of low sets enable, load, and the
binary shift register enable Ebin to high to shift from the
BCD register into the binary register. The counter enable
EC is set to high with each shift.

When a comparator signal is high, State 3 is entered.
Load and enable for the BCD shift register are set to high as
is the selector for the multiplexer that controls whether the
original or subtracted bits are used as the load. With this, the
updated BCD number is loaded into the shift register and
shifted. The Ebin is set to high after the subtraction,
allowing for the LSB of the updated BCD number to shift
into the MSB position of the binary number. Each time a
shift occurs, the counter is enabled as EC is set to high.

Otherwise, if the output of the counter is high, the
system transitions to State 4. When ZC is high, the
conversion is complete and the selector to the output
multiplexer is set to high, causing the converted number to
be displayed with the on-board LEDs. The system then
returns to State 1, idling until S transitions from low to high.

Figure 3: BCD to binary datapath schematic

C. Datapath Circuit

Figure 3 depicts the datapath circuit used in the design,
which consisted of twelve switches, two shift registers​,
multiplexers, a counter, subtractors and a simple-circuit
comparator. The input from the switches serves as one of
the inputs to a multiplexer that determines what the parallel
load into the BCD shift register will be. ​The other input to
the multiplexer is the result of subtracting three from the
BCD nibbles. When the selector sL is high, the altered BCD
becomes the parallel load when both load L and enable E of
the shift register are high.

To determine if the nibbles of the shifting BCD are less
than seven, each nibble’s MSB is compared: if it is one, the
nibble is greater than seven. The MSBs serve as selectors to
two multiplexers, each with two inputs: the unaltered
nibbles and the subtracted nibbles. When the MSB is one,
the subtracted value becomes the output. These nibbles get
concatenated to create the adjusted BCD. This is the
adjusted BCD number that becomes the parallel load to the
BCD multiplexer when sL is high.

With each clock tick, one bit is shifted out of the BCD
shift register and into the binary shift register. This value
becomes the MSB of the converted binary number.

D. Project Revision Process

As experiments and tests were conducted on the various
components, we learned more about the inner-workings of
the BCD to Binary converter. Each component was
debugged individually before being incorporated in the top
file. After debugging, we were able to run the project
simulation and check for design errors. One notable change
to the design was when expanding the algorithm to work for
a 12-bit BCD input. The original double dabble algorithm,
which accounts for a an 8-bit BCD input, requires that the

least-significant nibble is checked for values greater than
four. In our model, each of the nibbles are checked for
values greater than seven. This change occurred because of
the addition of the four bits that represent the hundreds
place in decimal. The revision process also allowed us to
identify an error in the subtractor circuit. This was corrected
by revising and checking the Karnaugh maps used to create
the circuit.

Revising the project inspired new ideas about
controlling the system more efficiently, one such idea being
to use a switch to control when the BCD input is loaded into
the system. The position of the Load switch serves as the
signal S in the finite state machine in Figure 1. Manually
controlling when the system should begin the conversion
assures that the process will begin correctly.

A simulation followed each alteration to ensure that the
outputs were being computed as expected.

III. EXPERIMENTAL SETUP

The setup we utilized first to verify the functionality of
our project is a testbench in Vivado. The timing diagram
produced from the Behavioral Simulation of the architecture
served as a tool to guide us through the process of
debugging. By analyzing each component’s contribution to
the outcome, we were able to identify when and where
problems were occurring.

We then implemented our design on the NEXYS 4
DDR board, as seen in Figure 4, using twelve switches for
the BCD input and eight LEDs for the binary output,
starting with the least significant bit on the right for both the
input and the output. The two leftmost switches were
designated for Resetn and Load.

We verified that the conversion is performed correctly
with experimental values on the test bench and then we
input our own values with the implemented design on the
NEXYS board. The expected result was a fully functioning
BCD to binary converter.

Figure 4: NEXYS 4 DDR board experimental setup

IV. RESULTS

We were ultimately able to successfully convert a given
BCD number to binary using the code we developed in
VHDL. Consistently, the expected binary number was
displayed on the built-in LEDs given any BCD input from
000-999, indicating that we had translated the algorithm into
digital logic correctly.

Our greatest discovery from designing and implementing
BCD to binary conversion architecture was the hidden
complexity of a seemingly simple algorithm. One such area
of unexpected complexity was in replacing the BCD input
with the subtracted BCD when a given nibble is greater than
seven. The initial design made the modification bit by bit
but was not yielding correct results. This issue was resolved
by incorporating a multiplexer with two inputs: the
unaltered BCD and the altered BCD. Making this
modification broadened our understanding of shift registers
and how their load inputs can be manipulated to yield the
desired results.

Designing architecture yields concrete results due to only
using digital signals. Though the results can deviate from
expected, there are never inconsistencies. This can be
contrasted to developing a system that requires analog input.
Analog data requires quantization, adding steps into the
process that could produce errors. Working with a purely
digital system avoids these issues, allowing for a deeper
exploration into what can be created with digital logic.

CONCLUSIONS

A BCD to binary converter was successfully
implemented on an FPGA. An input of 3 BCD digits was
efficiently converted into a 10 bit binary output. In addition,
the scalable nature of our architecture would allow
modification of the converter to accommodate an increased
BCD input size without a change in design philosophy.

Through completing this project, the group gained
substantial experience in the design of digital systems,
VHDL coding, and use of the NEXYS-4 board.

 REFERENCES

[1] Convert Binary numbers to BCD in VHDL and Verilog,
nandland.com

[2] BCD to Binary Conversion on an FPGA,
https://embeddedthoughts.com

https://embeddedthoughts.com/

