
PixyCAM UART Interface

List of Authors (Kristof von Czarnowski, Matthew Wener, Luke Pridemore, Randy Wittorp)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: kpvonczarnowski@oakland.edu, mwener@oakland.edu, lpridemore@oakland.edu, randywittorp@oakland.edu

Abstract—The purpose of this project is to interface an FPGA
with a PIXY CMUCam using the internal serial UART
protocol.

I. PROJECT DESCRIPTION
The goal of this project is to utilize the UART protocol

to display information on the FPGA coming from the Pixy
Cam. The UART protocol on the FPGA allows for data
transfer between two devices using serial communication.
The Pixy Cam comes with an onboard algorithm that can
track objects based on their color signature. The Pixy Cam
provides a x-y coordinate pixel mapping relative to a
320x480 pixel viewport, as well as the pixel height and
width of the tracked objects mapping. The purpose of the
VHDL program is to parse this information from every bit
sent from the Pixy Cam’s UART protocol. The positional
and dimensional information for the object is to be stored in
six 16-bit registers and displayed on the onboard 7-segment
display array. A multiplexer controlled by the onboard
switches is used to select which stored data is passed
through to the 7-segment display. These registers store the x
coordinate, the y-coordinate, the width of the object and the
height of the pink ball relative to the Pixy Cam.

The motivation behind the project stems from the whole

group being interested in data transfer between electronic
devices. A member already had the Pixy Cam, so it was
decided to investigate uses of that camera via an FPGA.
This system has many practical applications, such as
tracking the change in dimensions of an object to prevent
collisions for an autonomous rover. The Pixy Cam could
also recognize a specific color for filtering applications and
forward that information for further processing. The
interfacing of the Pixy Cam and the FPGA showed how
finite state machine could be used to parse data and how to
use an oversampling bit generator. The most difficult part
was properly storing data coming from the UART parsed
signal block. This was also the part of the project that
involved the most research.

II. METHODOLOGY
The interfacing of the Pixy Cam and the FPGA uses a total
of eight VHDL components:

1) UART Parsing Block [2]
2) Clock Divider (sets oversampling rate) [3]
3) Storage Controller Finite State Machine
4) 8-bit Registers [3]
5) 16-bit Registers [3]
6) 4-to-1 MUX w/ 2 Select Lines [3]
7) 7-Segment Display Serializer [3]
8) RGB Led Controller [3]

The top-level design of the project begins with the

oversampling clock divider. The data from the Pixy
Cam is sent to 8-bit registers to be stored as memory,
each corresponding to the data it represents. Then the
data that was separated by the UART stream into two-
byte size pieces is taken from the two corresponding 8-
bit registers and concatenated into a two byte sized
piece of data that is stored in a 16-bit register. The four
pieces of data (X, Y, H and W) are displayed on the
serializer, using a multiplexer to switch between them.
The multiplexer is controlled by switches on the FPGA
so that all the data can be seen by the user and a
corresponding color code is displayed on the RGB for
the user to help identify the data being displayed. The
checksum and the signature number bytes are also
stored in two of the 16-bit registers, but this data is not
used for the project.

Figure 1. The PixyCam

mailto:kpvonczarnowski@oakland.edu
mailto:mwener@oakland.edu
mailto:lpridemore@oakland.edu
mailto:randywittorp@oakland.edu

Figure 2. Top level design

The most difficult part of the project revolved around
the signal processing. Initially, the group was unsure how to
assign data properly to the register coming from the UART
parsing block. We overcame this issue by identifying how
VHDL can be used to store data at specific point in time
relative to our data signals.

Figure 3. Pixy Cam Data

Figure 3 depicts the how the data is transferred from the
Pixy Cam [1]. The signal is high (idle) until a start bit is
detected and then the sync, checksum, signature number, X,
Y, W, and H bytes are sent and the useful data is stored into
several 8-bit registers.

Parsing a UART signal proved to be more difficult than

expected. However, the answer to this issue was found
online in the form of existing VHDL code that had been
written to parse any UART data stream [2].

The baud rate is set on the PixyCAM (in this case, it is

19,200 bits per second). It was found that interpreting the
UART signal can be done by oversampling the signal in a

FSM. To oversample the UART signal, a frequency of 16
times the baud rate (307 kHz) must be used in a counter.

As the counter starts to increment, starting from zero,

every time the start signal is high until it reaches 7 (the
center of the start bit). The counter clears, and the state
transitions into data collection mode. With the center of the
start bit detected, the counter increments another 16 times
until it reaches the center of the first data bit. The value is
stored, and the process repeats for the number of data bits in
the given signal (in this case 8 bits). Once data collection is
complete, the stored data is assigned to an output and waits
16 ticks so that it is in the stop bit to wait for new data.

A finite state machine, bitstream_parser, had to process
the stored data from the RX UART component which is
used to assign data to the correct registers.

Figure 4. FSM Diagram

The FSM has 14 states for creating enable signals 8-bit

registers so that the store the correct data as it is transferred.
The done signal in the final state is used to activate the 16-
bit registers that combine the byte sized sections into their
final two-byte value.

III. EXPERIMENTAL SETUP
The experimental setup involved an Arduino board for

a 5 V power supply, the Pixy Cam, an object to track, and
the FPGA. Prior to testing, the Pixy Cam had to be
calibrated to track an object. For this project, we calibrated
it to detect a pink ball.

Figure 5. Experimental Setup

Figure 6. Testbench Simulation

A testbench was developed to verify if the digital blocks
were working as intended. The signals that activate each
register cascade, corresponding to the progression of states
in the FSM. The signals correspond to which registers are
being selected for storage. A done signal indicates when the
individual data bytes should be combined into their final
two-byte values.

IV. RESULTS
The interfacing between the FPGA and the Pixy Cam

proved to be successful. The Pixy Cam actively sends data
to the system and the FSM stores that data to registers, and
once the Pixy Cam stops detaching the object, the memory
will hold the previous value. The switches on the FPGA
allow for the X, Y, width, or height values to be selected to
be forwarded to the serializer and 7-segment display.

Figure 7. X value coming from the Pixy Cam.

The value of the X-coordinate in Figure 5 is 7F in

hexadecimal. This corresponds to 127 in decimal notation.
The maximum value X and Y can reach are the limits of the
Pixy Cam’s resolution (320x480). The width has a limit of
319 and the height limit is 199.

A video of the demonstration can be found at

https://www.youtube.com/watch?v=lFH3Aim-BeY.

V. CONCLUSION
The project taught the group more applications for the

UART communication protocol. We encountered many
issues throughout the process, but we were able to solve
them by researching more VHDL.

If we had more time to work on the project, we would

implement distance detection between the Pixy Cam and the
object being tracked. We could display the distance as a
vector with a magnitude and direction on another 7-segment
display.

REFERENCES
[1] CMUcam5 Pixy, “Pixy Serial Protocol,” cmucam.org, July 5,

2014. [Online]. Available:
http://www.cmucam.org/projects/cmucam5/wiki/Pixy_Serial_P
rotocol. [Accessed April 5, 2018]

[2] J. Plusquellic. “Hardware Design with VHDL Design Example:
UART,” Nov. 23, 2015. [Online]. Available: http://ece-
research.unm.edu/jimp/vhdl_fpgas/slides/UART.pdf.
[Accessed April 5, 2018].

[3] D. Llamocca, “Reconfigurable Computing Research
Laboratory,” April 2018. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/ [Accessed April 5,
2018].

https://www.youtube.com/watch?v=lFH3Aim-BeY
http://www.cmucam.org/projects/cmucam5/wiki/Pixy_Serial_Protocol
http://www.cmucam.org/projects/cmucam5/wiki/Pixy_Serial_Protocol
http://ece-research.unm.edu/jimp/vhdl_fpgas/slides/UART.pdf
http://ece-research.unm.edu/jimp/vhdl_fpgas/slides/UART.pdf
http://www.secs.oakland.edu/%7Ellamocca/

	I. Project Description
	II. Methodology
	III. Experimental setup
	IV. Results
	V. Conclusion
	References

