
Home Security System

Samantha Fakhouri, Thomas Filarski, Nathan Kelley, Mathew Plaza

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: sfakhouri@oakland.edu, tfilarski@oakland.edu, nkelley@oakland.edu, mathewplaza@oakland.edu

Abstract: The goal of this project was to create a Home Security

System for use in home or business. Through the use of a Finite

State Machine, along with some independent research on

arduino based Sensors a home security system that detects

motion, asks for a switch input, and then proceeds to either

trigger an alarm or disarm itself until the user rearms it was

created successfully. This project is simpler than a full security

system, but it is a baseline that could be extended to serve larger

purposes with different components and knowledge.

I. INTRODUCTION

The original idea for this home security system came from
an EGR 240 test problem the group encountered during their
studies. In it, it asked us to use a decoder to map a series of
inputs, as well as the output, and then determine how the
security system should react. It was a simple system, but it
certainly had a few problems. During the test time, when this
question was on the exam, many people had various reasons
why a certain set of inputs should be reacted to in different
ways. For example, if no code is entered in time, but the sensor
didn’t pick up anything, should that be considered an error?
Or just an alarm?

 This project hopes to take this problem in a different
manner. Instead of using an asynchronous decoder, we used
our knowledge that we learned in class about Finite State
Machines to completely overhaul the design process of this
problem and improve upon it. By using a Finite State
Machine, we are able to set triggers to occur for different
situations, rather than just have a series of outputs based on a
single input, which, is prone to errors, and was ultimately
complicated to implement.

What we had to learn on our own was how to implement
external inputs and outputs mainly. Our external input, the
sensor was the hardest to achieve, and used an arduino both as
a power supply as well as some code. The PMOS pins were a
bit unintuitive to use at first, but in the end we successfully
made a working sensor as an input. External wiring also had a
few quirks that we had to learn. For example, because we used
both an arduino and an external sensor, the ground for the
Nexus 4 board and the arduino had to be connected, else the
signal would change due to different voltage reference points.

This project is a Home security system. It is primal, in the
sense that normally you would use a smaller board to create
something like this, but the biggest advantage is that this
system could be easily changed with some knowledge of
Computer Hardware Design to implement more sensors such

as the accelerometer as well as infrared sensors or sound based
sensors. With some increased knowledge, and a bit of
knowledge with electrical wiring, this system could easily be
expanded to cover multiple rooms of a house. Finally, with a
bit of refinement, the switches could be attached to a keypad,
to create a passcode lock. This system is just a model for what
security systems can be created, but this model is the base for
a variety of security systems for various purposes.

II. METHODOLOGY

This project consists of a series of switch inputs, along
with a sensor. The internal microcontroller contains an FSM,
comparator, register for passcode storage, as well as a decoder
to control the outputs: an LED and a piezo buzzer.

The basic structure of this system is that the input switches
go to a comparator to compare their values to the stored
passcode. This outputs a signal that goes to the finite state
machine. The finite state machine takes this input, as well as
the sensor input and timer input, and based on the logic
discussed in its section, sends an encoded 2 bit code to the
output LED decoder and alarm to determine which led should
turn on, telling the user which state the system is in. If an alarm
is determined to be necessary, it also tells the buzzer to turn
on. For a complete block diagram see Appendix A.

A. Initial Inputs

The inputs of the alarm system consist of eight switches

used to check if the person entering is the owner, a

motion sensor that detects entry and starts the

countdown for the correct password to be entered, a

reset button which resets the entire system. Finally, a

softreset button which sets the system back to armed.

 The eight switches used for the passcode go to a

register and a comparator. When the correct password is

entered the comparator will output a ‘1’. When the

softreset button is pressed and the correct passcode has

been entered the password will be changed in the

registers to be used later. The motion sensor is set up on

an Arduino board because the motion sensor uses a 5V

input to be powered. Then the sensor detects motion in

outputs a high value which is read by the Arduino. The

Arduino then outputs a HIGH value which is sent to the

FPGA and causes the finite state machine to go from

state 1 to state 2. When the reset button is pressed the

entire system is reset, this means the password is

changed back to 0000 0000 and the FSM is changed

back to state 1.

B. Finite State Machine

The first thing to create when designing the security

system was to define the different states of operation.

This naturally would lead to a Finite State Machine.

When the security system is armed, but the sensors

detect nobody in the house, there should be a state that

constantly looks for potential intruders. Thus this state

we deemed the "Armed" state or the "Inactive" state, as

there was no passcode functionality active. In this state it

needs to detect any potential intruder, and thus when the

sensor picks up motion, it shifts into the second state

"Entry mode".

 In the second state, "Entry mode" the system

desires the correct passcode. When designing this state it

was important to realize in a security system there are

parameters in which to trigger an alarm, and parameters

in which to accept the passcode. In the security system,

if the passcode is entered correctly, it should transfer

into the "Correct Password Entered" state. However, in

this security system's state, if a correct passcode is not

entered in a certain period of time, then it should trigger

the "alarm".

 In the third state "correct password entered", the

system has recognized that the correct passcode has been

entered. Thus, there are no timers to trigger any alarms.

However, this state also is meant to change the passcode.

In a security system. the password should only be able to

be changed once the correct passcode has been entered.

Thus, this functionality is only allowed within this state.

This is a separate trigger, outside of this state, tied to a

switch, and thus it makes the resulting FSM a mealy

machine. In addition in the case of a user reset, it will

move back to the "Inactive" state.

 In the fourth state "alarm”, the system has timed

out before a correct passcode was entered. Thus, the

system triggers an alarm, in this case, a piezo buzzer in

addition to locking down the system until a reset is

given.

 These states are encoded into a 2 bit code that is

sent to a decoder. Each one of these states are handled

differently by the decoder. The figure below shows the

FSM created in ASM format.

C. Password Storage Register

The password storage register is a synchronous

component. Its inputs are the 8 bit input from the entry

switches, and the “wrtAllow” input from the FSM, as well

as the clock signal and the resetn. Its default state on

startup is the passcode 0000 0000. As stated earlier,

wrtAllow is only high if the passcode has been entered

properly (“correct password entered state”) and the user

activates the allow password change switch. If these

conditions are met, the current state of the switches is

converted to the new password in memory. If it is not

high, the current password in memory is maintained. If

the CPU reset button is pushed, the passcode is cleared

and set to the default 0000 0000 passcode.

Figure: Basic Logic of password storage register.

D. Comparator.

The comparator is a simple asynchronous component. Its

inputs are the 8 bit number from the register, and the 8 bit

input from the entry switches. It simply takes the

passcode from the register, compares it bit by bit to the

current state of the switches (in binary). If they are equal,

the comparator outputs a ‘1’. If they are not equal, it

outputs a 0.

Figure: simple logic of comparator

E. Timer.

The timer is a series of clock dividers followed by a

counter. The clock divider inputs a 10MHz clock, and

through frequency division. First it scales the clock

frequency down from 10MHz to 400Hz through a

25,000:1 counter frequency divider. It then scales the

clock down to a 1Hz clock by using a 400:1 frequency

divider. The final block takes this 1Hz input and outputs

a 4 bit number (from 10 to 0) that starts at “1010”(10) and

decrements one every time it receives a rising edge clock

tick. This means that the output of the timer block is a 4

bit number ranging from 10 to 0 that is then sent to the

7segment decoder to be displayed on the arduino. This

number continues to decrement, and when it hits 0, the

timer signal is turned high, triggering the alarm state.[1]

F. Decoder LED

The LED decoder looks at the outputs of the finite state

machine to determine which LED color(s) should be

activated. When the FSM is in state 1 the output is A1 =

0 and A2 = 0 which will activate the red and blue LEDs

creating a purple color to show that the security system

is Armed. When the FSM is in state 2 the output is A1 =

0 and A2 = 1 which will activate the red and green LEDs

creating yellow to show that there has been an entry.

This will cause the timer to start and the user will have

to enter the password. When the FSM goes into state 3,

A1=1 and A2 = 0, which means that the correct

password was entered within the allotted time causing

the green LED to light up to show that the correct

password was entered. Then the FSM goes into state 4,

A1 = 0 and A2 = 0 then the red LED will light up to

show that someone has broken in and will have the

FPGA output a high value to activate the piezo buzzer.

III. EXPERIMENTAL SETUP

For testing we used the Xilinx Vivado software to create a
timing diagram based off a testbench. The testbench starts in
the inactive state, triggers a sensor to move it to the entry state.
It then inputs the correct passcode 0000 0000 to send it to the
correct passcode entered state. It then sets allow password
change to true, and rewrites the passcode. It then soft resets
and repeats the process, but with the new passcode. Finally, it
soft resets a third time, repeating the process, but instead
overriding the timer (for testing purposes) to trigger the alarm.

See Appendix B for waveform result.

IV. RESULTS

The project gave the results that were expected except for

the buzzer. When the state changed in the FSM, the LED
color changed as expected. Also when state 2 was entered the
timer would count down from ten to zero. When the alarm
state was entered the FPGA output a voltage but it was not
powerful enough to make the buzzer as loud as desired.

Figure: Sample LED Showing Alarm State.

CONCLUSIONS

In conclusion, our design of the security system

was an overall success. First, the sensor recognizes

movement and start a timer. Before the sensor, the RGB

LED is yellow, and after it is purple. If the correct 4-digit

code was entered by the switches 0 to 7 (simulating a

keypad) before the timer reaches 30 seconds, the RGB LED

turns green. If the same situation happens but the code is

incorrect or if no code is typed in within the 30 second

window, the LED turns red (signaling the alarm). As for the

topology, it starts with the sensor and keypad. The sensor is

connected to a voltage divider and then to the FPGA. The

timer is displayed on the 7-segment display. The switches

on the FPGA are then switched on then immediately off

(similar to that of a keypad). The default code is 0000, but

if the signal WriteAllow is activated, a code can be set,

which is stored in registers and is compared to future codes.

The output of the comparator (either a logic 0 or 1) is sent to

a finite state machine, and depending on the inputs, the

finite state machine will control the color of the LED. Some

limitations include the lack of a keypad and errors with the

alarm. Although an actual keypad was not present, it could

still be simulated with the switches, so the addition of a

keypad would not have affected the performance of the

system. As for the alarm, when activated, it would produce

a very high frequency pitch in which only a few could hear.

A different alarm or different frequency of the clock might

have improved the performance of the alarm and therefore

the system.

REFERENCES

[1] C. A. Ramos, “Frequency Divider with VHDL,” Frequency Divider

with VHDL - CodeProject. [Online]. Available:
https://www.codeproject.com/Tips/444385/Frequency-Divider-with-
VHDL. [Accessed: 20-Apr-2018

Appendix A: Full Block Diagram

Appendix B: Waveform

