
Traffic Light Controller

Aaron Gott, Andres Manzanares-Davila, Kristi Stefa, Damion Duemling
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: aarongott@oakland.edu, andresmanzanare@oakland.edu, kstefa@oakland.edu, dduemling@oakland.edu

Abstract— this project was centered about the
development of a 4-way intersection traffic light controller.
We learned plenty of new information but most
importantly how traffic lights change between different
states and modes. Also, adding simple modes such as Rush
Hour, After Hours, and Crosswalk made the project a lot
more challenging than we originally thought. We put our
prior knowledge in practice and used VHDL code as well
as a Nexys Board to build the traffic light controller.

I. INTRODUCTION

When deciding what to do for our final project we had
one thing in mind: choose something that we used on a daily
basis. Traffic lights ensure the safety of millions of people
and allows them to cross intersections without trouble.
Before we had traffic lights, crossing intersections was a
hassle but since the early 1900s traffic lights have helped us
relieving traffic while making it safer to cross intersections.
For this project a 4-way traffic light controller was created.
The controller used an FPGA that was programmed using
VHDL. the components of the controller consist of a finite
state machine, three counters, and two D Flip-flops. The
motivation of this project is to take these things that we
learned in class and apply them to a real-world application
to better understand their uses.

Along with a standard function traffic light, there are
different modes that can be enabled just like in the real
world. The Other features of this traffic light controller will
include, an 4-way flashing mode that will flash the traffic
lights red or yellow as they normally do late at night. The
controller will also feature two crosswalk buttons, one to
cross the north-south street and the other will be to cross the
east-west street. When the corresponding switch is flipped
to trigger the cross walk the controller will then stop the
traffic in the corresponding direction so that a pedestrian is
able to cross the street.

II. METHODOLOGY

A. Counters
There are three counters used to control the traffic

lights. One for the green light, one for the yellow light, and
one for the crosswalk. Notice how we didn’t need a red light

counter. Our goal was to have the green light counter for
~15 seconds, the yellow counter for ~5 seconds, and
therefore the combination of these would make our
“imaginary” red light counter ~20 seconds.

B. D Flip-Flops

We used two D Flip-Flops in our project. One was
for the Main Road crosswalk and the other for the back road
crosswalk. The main function of these was to register
if/when either of the crosswalk buttons was pressed and if
so, when it was pressed.

1

mailto:aarongott@oakland.edu
mailto:andresmanzanare@oakland.edu
mailto:kstefa@oakland.edu

C. FSM
The Finite State Machine was the most important

part of the code. It allowed us to change between six
different states depending on which mode we were in.
State 1 was the Main Road = Green, Back Road = Red.
State 2 was the Main Road = Yellow, Back Road = Red.
State 3 was the Main Road = Red, Back Road = Green.
State 4 was the Main Road = Red, Back Road = Yellow.

The first four states were the most important since
we had all possible outcomes of both traffic lights.
However, for our After Hours mode we had to introduce
two more states:
State 5 was the Main Road = Yellow, back road = Red.
State 6 was the Main Road = OFF, back road = OFF.

These two states allowed us to have the Main road
blinking yellow (proceed with caution) and the back road
blinking red (treat it as a stop sign). We used the yellow
light counter to switch between these two states.

D. Top Level Design

The top file allowed us to connect all of our
components together. Our top file had seven inputs: clock,
resetn, enable, RushSwitch, MidnightSwitch, Crosswalk1
Button, and Crosswalk2 Button. The top file also had four 3
bit outputs: LED, LED2, LED3, LED4. The first two
represent the traffic lights in the Main Road, while the last
two represent the traffic lights in the back road, This can be
seen in the following Block Diagram/Top File.

III. EXPERIMENTAL SETUP

A. Software
The software that was used to create the traffic

light controller was Vivado design suite by Xilinx. This
software uses the VHDL programming language to create
each component of the Program. The goal was to create the
distinct states at appropriate times and get the right outputs
for the top file. The components were coded individually
and then mapped together to create a central and governing
top file. The top file was then connected to the physical
hardware with the board and LEDs for visualization.

B. Testbench

The testbench that was created to test the program
that was written was meant to cycle the inputs into each
possible state. This was to make sure that the state machine

2

and the outputs were functioning correctly before it was
uploaded to the FPGA. By verifying that code is working
with a testbench we are saving time by not having to
re-upload the code to the FPGA every time a change is
made.

C. Hardware

The hardware that was used to model the traffic
light consisted of a NEXYS 4 DDR FPGA, four red LEDs,
four yellow LEDs, four green LEDs, one 100Ω resistor,
jumper wires and a breadboard. The LEDs were arranged on
the breadboard to represent the 4-way traffic light and then
wired together so that the north and south facing lights
would activate the same color LEDs at the same time, this
was also done with the east and west facing lights. After the
lights were wired they were connected to the NEXYS FPGA
through the PMOD headers. These PMOD headers were
programmed to turn on and off the LEDs as the program
cycles through its different states.

IV. RESULTS

During the preliminary testing, some issues were found
where the system would be stuck in a certain state if the
rush switch was enabled. After the code was properly
debugged, the lights worked as expected according to our
plan and the different modes could be displayed. Because
the LEDs came out very dim, a new set was implemented
using a breadboard for the demonstration. After initial
testing, the timing was deemed lengthy and so the program
was adjusted to be shorter. The program worked and
displayed in logical steps so issues were very apparent and
easy to diagnose.

CONCLUSIONS

The main takeaway that could be taken from this project
is the importance of planning out a circuit and being able to
implement it in a real situation. Trying to implement a
design and plan is inherently difficult so the labs done in
class were a helpful guide for the project. A lot of
technology that is in use today makes use of programmable
boards and circuits that are designed and implemented. Also
of importance is how well the program visualizes and how
the code can control lights and other physical implements.
More can be attached to the base project such as sensors to
check cars, alarms if passed on red, and others that make the
system more complex and useful.

References

[1] D. Llamocca-Obregon, VHDL Coding for FPGAs
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.ht

ml

3

