
Traffic Light Controller

Matt Budzynowski, Joshua Donahue, Trent Smith

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

mbudzynowski@oakland.edu, donahue2@oakland.edu, tsmith11@oakland.edu

I. Introduction

The scope of this project is to design and code a

simple traffic light controller. This project can be

implemented to control traffic flow through a four-

way intersection. We will model a North-South-East-

West intersection as a way to label each light (RNS =

red light in the North/South direction, GEW = green

light in the East/West direction, etc.). The main

components that will be employed are three counters

of different duration, and a Mealy finite state

machine (FSM). The system will incorporate two

modes: daytime (normal) operation and nighttime

(flashing) operation.

II. Methodology

The main driving factor of this traffic light

controller is the FSM. The operation of the system is

comprised of nine different states, and the FSM

drives the change of these states in order to operate

the traffic lights as desired. Daytime operation mode

consists of the following states:

• S1: GNS, REW

• S2: YNS, REW

• S3: RNS, REW

• S4: RNS, GEW

• S5: RNS, YEW

• S6: RNS, REW

S1 will be active for 10 seconds, S2 will be active for

3 seconds, and S3 will be active for 1 second.

Following S3, states S4, S5 and S6 will follow the

same timing pattern, so long as the system remains in

daytime operation mode.

Nighttime operation mode gives a flashing

yellow light on the North/South path and flashing red

light on the East/West path. Since we want to make

these lights alternate, this mode will incorporate two

additional states:

• S7: YNS

• S8: REW

Finally, a system enable will be incorporated, turning

the system off completely, adding the last state:

• S0: 0

Three separate counters are used as inputs to the

state machine in order to drive the transitions

between states. The counter implementation is as

follows:

Clock: a clock will be used to drive the function of all

counters in the system, as well as the FSM. The

period of one clock cycle is 10ns (100MHz

Frequency).

Counters: the traffic control system is based on

counters that emit a logic-high pulse when they reach

a predetermined count, which starts the next state of

the process. Each state is associated with a different

length counter because of the different duration of

each state. The one-second counter emits a pulse after

108 clock cycles, the three-second counter emits a

pulse after 3*108 clock cycles, and the ten-second

counter emits a pulse after 109 clock cycles.

 Each of these counters employs an enable

signal and a synchronous clear signal as inputs, to

drive the behavior of the counter. These enables and

sclr signals are driven by the FSM based on the

current state and the inputs to the FSM. For example:

in S1, the ten-second counter (c10) is active and the

other two counters (c1 and c3) are inactive. At the

end of the ten seconds, c10 emits a logic-high pulse,

at which time the FSM looks for the position of the

mode switch to determine the next state. If the next

state is S2, the FSM will disable and clear c10, by

emitting a logic-low signal for E10 and a logic-high

mailto:mbudzynowski@oakland.edu
mailto:donahue2@oakland.edu
mailto:tsmith11@oakland.edu

signal for sclr10, and enable c3 via a logic-high

signal for E3.

In addition to controlling the counter enable and

synchronous clear signals, the FSM also incorporates

a 12-bit output (s); each bit of this output signal

drives the behavior of one of the active-high traffic

lights.

The provided state diagram (Fig.1) has been

developed to formally show the description and

behavior of each state, as well as the transitions to the

next state, based on the system inputs and current

state. Each input and internal signal abbreviation is

specified (Fig.2), and the state assignment and state

table are also provided (Fig.3 & 4). VHDL code was

written directly from this state diagram, and the

circuit interconnections are shown in the circuit

diagram (Fig. 5).

Fig. 1: State Diagram

Fig. 2: Signal Abbreviations

Fig. 3: State Assignments

Fig. 4: State Table

Fig. 5: Circuit Diagram

III. Experimental Setup

Once the VHDL code was written, the bitstream

was generated and then programmed onto an Artix-7

FPGA for experimental simulation. Since this circuit

is relatively simple, no behavioral simulation was

performed in Vivado. Instead, the board was

programmed and then debugged through actual

system operation. The only debugging step that was

necessary was altering the code in the counters so

that the synchronous clear signal reset the counters

while the counter enable was “0”. This ensured that

each state lasts the intended duration, even with a

mode change in the middle of a state.

Switch 1 and Switch 0 are assigned to the mode

and system enable signals, respectively, and the CPU

reset button will be assigned to the “resetn” signal.

The “resetn” signal resets the FSM and all counters

immediately when pressed (it is not a synchronous

signal). LED’s 13 down to 2 are assigned to RN, YN,

GN, RE, YE, GE, RS, YS, GS, RW, YW and GW, in that

order. With the board programmed in this manner, the

traffic light controller operates exactly as planned.

IV. Results

We were able to employ the generic counter, as

well as the principles of the finite state machine, to

implement a properly functioning traffic light control

system. See below link for a video of the system

operating as desired, according to the system

requirements and schematics.

https://youtube.com/shorts/qX00K5jK7VI

V. Conclusions

The Results of this project showed that the traffic

light controller worked effectively and as planned.

Challenges arose in the mapping of the objectives of

safety in the real world to the state machine as

different transitions. However, the final results ended

up being almost the same as the traffic lights that are

used on roads today. A challenge that would still need

to be addressed is implementation of a large enough
light system to control an intersection. The project

was mapped to a Nexys board which allows the

system’s efficacy to show but is not practical for real

world implementation.

VI. References

[1] Llamocca, Daniel. “VHDL Coding for FPGAs.”

Reconfigurable Computing Research Laboratory,

Oakland University Electrical and Computer

Engineering Department,

www.secs.oakland.edu/~llamocca/VHDLforFPG

As.html. Accessed 26 Nov. 2024.

https://youtube.com/shorts/qX00K5jK7VI

