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Abstract— This project involves the design and 
implementation of a digital stopwatch that is meant 
to measure time in minutes, seconds, and hundredths 
of a second. Functions include start, pause, lap, and 
reset. The entirety of this project will be based on 
concepts learned throughout the course. The 
hardware testing confirmed the accuracy of the 
circuit diagrams and the proper functionality of the 
stopwatch. The design demonstrated the integration 
of timing circuits, inputs, and outputs. Main 
recommendations include adding a debouncer 
component to circuits to ignore fluctuations that may 
occur when pressing a button. Another 
recommendation is to use a finite state machine that 
can track how many laps you have stored. 
 

I. INTRODUCTION 
The goal of this project is to design a digital 

stopwatch using Vivado software, implementing it onto 
a Nexys FPGA Board. This report will consist of all the 
features and components that will be used to create the 
stopwatch itself. These features include a start, pause, 
lap, and reset. The components include the clock divider, 
decoders, edge detectors, counters, registers, and 
multiplexers.   

The motivation for this project is to deepen our 
understanding of digital timing circuits and how to 
implement them into real world circuits. By developing 
a stopwatch, we can gain hands-on experience with all 
the concepts that were taught in the actual course. A lot 
of concepts that were from the course were applied to 
this project. This included component designs, VHDL 
codes, and how to apply all into the board for its actual 
use.  

The applications for this project range from a 
standard stopwatch to much more advanced systems 
which can be further designed. 

 
 

II. METHODOLOGY 
We will start the methodology by explaining the 

functionality of each individual component in detail and 
continue explaining how all these components come 
together in the top circuit. It will not be mentioned again, 
so it should be noted that every component that can store 
values takes as an input the same active low CPU reset 
of the Nexys board.  

 
Figure 1: Debouncer 

A. Each Component in Detail 
We will start with the debouncer. The purpose of the 

debouncer is to ignore the fluctuations and bouncing of 
the input buttons. The structure of the circuit is shown in 
Figure 1. The circuit works by storing the last and current 
values of the button in D flip flops. There is a counter in 
the middle of the circuit. The sclr bit of the counter is 
connected through an xor gate to the current and last 
values. This means that the counter will continue to 
count up as long as the value of the button is stable. Once 
the output of the counter reaches a certain value, which 
will be a parameter of the circuit, the value of the output 
is allowed to be set to the value of the button. This is 
done using an equality detector circuit connected to the 
enable bit of a D flip flop whose D bit is the last value 
and whose Q bit is the result of the debouncer. We have 
chosen a value for the parameter that requires the button 
to be stable for 10 milliseconds to be valid. This creates 
a delay, but it is unnoticeable to the human eye. It also 
requires the button to be pressed for longer than 10 
milliseconds to register, but the author of this section has 
not been able to press a button quickly enough for the 



circuit not to notice. The idea of this debouncer circuit 
was inspired by [1].  

The clock divider takes an input clock signal with a 
certain period and outputs a clock signal with a period 
that is an even multiple of the input period. We decided 
to use a process statement to design this circuit, rather 
than using a structural approach. An integer value is 
incremented on the rising edge of the input clock and 
resets to 0 when it reaches a certain value which is a 
parameter of the circuit. At the same time as the integer 
value resets, the value of the output clock inverts itself. 
The ratio of the periods of the input and output clocks is 
equal to the parameter value plus one multiplied by 2. 

 

 
Figure 2: Synchronous Edge Detector 

The synchronous edge detector is a simple circuit 
whose purpose is to output a one-clock-period-width 
pulse when it detects the value of the input going from 
low to high. This is accomplished, as can be seen in 
Figure 2, by storing the current and last values of the 
input in D flip flops. The output pulse then is equal to, in 
Boolean algebra, current and not last.

 
Figure 3: Watch 

The watch is the heart of this project. The watch 
outputs 6 4-bit binary coded decimal (BCD) signals, the 
first two representing minutes, the middle two 
representing seconds, and the last two representing 
hundredths of a second. It takes as inputs a 100Hz clock, 

an enable bit, and a sclr bit. If the enable bit is on, on the 
rising edge of the clock, the time output by the watch 
increments by one hundredth of a second. This is 
accomplished, as can be seen in Figure 3, with 6 4-bit 
modulo counters. The maximum value of each clock is 
nine (“1001” in BCD), except for the tens digit of the 
seconds, whose maximum value is five (“0101”). The 
enable bit of each counter is high only when the 
maximum value of each counter before it has been 
reached. This way, for example, in a time of 00:15.23 the 
ones digit of the hundredths is the only value that will 
increment, but with a time of 01:59.99, all values but the 
tens digit of the minutes will increment. Just as has been 
taught in this class for registers, enable takes precedence 
over sclr. 

 
Figure 4: ASM Diagram 

There is a finite state machine (FSM) used to control 
how the laps are stored. There are two inputs: load and 
slcr—and 6 outputs: E3, E2, E1, z3, z2, z1. There are 
four states, S0, S1, S2, S3, each corresponding to how 
many laps have been stored (more on this later). The 
transitions and outputs of the FSM are shown in the ASM 
diagram in Figure 4. 



There is a priority encoder in the circuit, but it is not 
a regular priority encoder. An input of “000” outputs 
“00”. “001” outputs "01”. “01X” outputs “10”. “1XX” 
outputs “11”. There is no z bit. The purpose of this 
component will be explained in a later section. 

Other circuits designed in this project include D flip 
flops, T flip flops, registers, counters, a BCD-to-7seg 
decoder, muxes, and adder circuits, but these are 
considered fundamental enough to not need 
explanations. 

 
B. Top Circuit 
The top circuit, as can be seen in Figure 5, can be 

divided into three main parts: the watch control, the lap 
control, and the 7-segment module control. It should be 
noted that every synchronous circuit, unless otherwise 
mentioned, is connected to the 100 MHz clock. 

 

● Watch Control 
The main purpose of the watch control is to 

produce the time of the stopwatch is BCD. There are 
three important inputs here: the 100MHz clock, a pause 
button, and a clear button. The 100MHz clock is 
connected to a clock divider to create an output clock of 
100Hz (T = 0.01 sec). This 100Hz clock is connected 
directly to the watch circuit. Both buttons are connected 
to debouncers. The output of the pause debouncer is 
connected to a synchronous edge detector, and the output 
of the synchronous edge detector is connected to a T flip 
flop. The output of the T flip flop will from here on 
simply be called E. The purpose of the synchronous edge 
detector and T flip flop is so that pressing the pause 
button once will have the effect of simply pausing or 
unpausing the watch, no matter how long the button is 
held down. The signal E essentially tells us whether or 
not the watch is paused. The output of the clear 

F

Figure 5: Top Circuit, Divided into Three Parts 

 



debouncer, which will from here on simply be called 
clear, is connected directly to the slcr bit of the watch 
circuit. The clear signal is connected to the sclr bit of the 
T flip which outputs E. This is because we want resetting 
the stopwatch to also pause it. This creates a problem, 
since the watch will only clear when the enable bit is 
high. This is why the enable bit of the watch is not 
connected directly to E, but equal to, in Boolean algebra, 
E or clear. The 6 4-bit outputs of the watch are 
concatenated into one 24-bit signal which will from here 
on be referred to as watch_time. 

 
● Lap Control 
The main purpose of the lap control is to allow the 

user to store laps. The important inputs to the lap control 
are as follows: the lap button, the clear signal, and the E 
signal. There are three 24-bit registers which store the 
vectors L1, L2, and L3, which are the laps. The D vector 
of each register is connected to watch_time and the sclr 
bit of each register is connected to clear. The enable bits 
of each register are connected to E1, E2, and E3. These 
values are controlled by the FSM. The lap button is 
connected to a debouncer whose output is connected to a 
synchronous edge detector. The purpose of this is so that 
pressing the lap button will produce a single one-clock-
period width pulse that will allow only one of the lap 
registers to be set. If we call the output of the 
synchronous edge detector lap_pulse, then we can define 
a signal lap_pulse to be equal to lap_pulse and E. 
The purpose of this is so that the user doesn’t have the 
ability to store laps when the stopwatch is paused (this 
was a decision based on the way a typical cellphone’s 
stopwatch works). lap_load will then be connected to the 
load bit of the FSM and clear will be connected to the 
sclr bit of the FSM the z1, z2, and z3 bits of the FSM are 
connected to led0, led1, and led3 on the Nexys board. 
The FSM assures that the following criteria are met: at 
any time, if the stopwatch is reset, all the lap registers are 
reset. If you have a register left for storing laps, pressing 
the lap button stores the current time in the next available 
lap register, unless the stopwatch is paused. If there are 
no lap registers, the lap button does nothing. The LEDs 
on the Nexys board help the user to know how many laps 
have already been stored. That is, no LEDs on means no 
stored laps, one LED on means one stored lap, etc. 

 
 
 

● 7-Segment Module Control 
The purpose of the 7-segment module control is to 

allow the user to choose whether he or she wants to see 
the current time or one of the laps and then to show what 
the user chooses on the 7-segment module on the Nexys 
board. The principal inputs to this part of the circuit are 
sw2, sw1, and sw0 from the Nexys board, watch_time, 
L1, L2, L3, and the 100MHz clock. The principal outputs 
are the 7-bit vector CA_CG, the 8-bit vector A, and the 
bit dp. The switches are connected to the priority encoder 
explained above. The output of the decoder decides 
whether the time will appear on the 7-segment module 
or one of the laps. No switches being on means the 
current time is visible. Sw2 being on (regardless of 
whether sw1 and sw0 are on) means lap 3 is visible, etc. 
The purpose of doing this is instead of choosing the lap 
with just two switches interpreted in binary is because 
the average user probably doesn’t know binary. The 2-
bit output of the decoder is then connected to the sel port 
of a 4-to-1 24-bit bus mux. watch_time is connected to 
the 0 port, L1 to the 1 port, L2 to the 2 port, and L3 to 
the 3 port. The output of this mux will simply be called 
time_viz.  

The way a typical 7-segment module works is that it 
is impossible to show different numbers on different 
parts of the module at the same time. But it is possible to 
turn all the digits off but one, show the number that 
corresponds to that digit, turn it off and then turn the next 
one and show the digit that corresponds to that digit, etc. 
Doing this quickly enough gives the human eye the 
illusion that all the digits are on at once. To do this, a 
clock with a period of 1 millisecond (frequency of 1000 
Hz) is needed. The 100 MHz clock is put into a clock 
divider which outputs a 1KHz clock. The 1KHz clock is 
connected to the clock bit of a 3-bit counter. This counter 
counts repeatedly from 2 to 7. The output of the counter 
is connected to the select port of an 8-to-1 4-bit bus mux. 
The Nexys board has 8 digits, but only 6 are needed, 
which is why the clock only counts between 2 and 7. The 
signal time_viz is separated into 6 4-bit signals which 
input into the ports 7 down to 2 of the mux. The ports 1 
and 0 are connected to a constant value of “1111”. The 
output of this mux will be called p. The output of the 2-
to-7 counter is connected to an active low decoder, 
whose output is connected to the vector A. The output of 
p is connected to an active low BCD-to-7seg decoder. 
The output of the 7seg decoder is connected to CA_CG, 
which tells the board which segments to turn on and 



which to turn off. The result of this is that the value of 
time_viz is constantly displayed on the 7-segment 
module. The output of the 2-to-7 counter is also 
connected to the select port of another 8-to-1 mux. All 
the input ports of this mux are connected to a constant 
‘1’, except for the 4 port which is connected to a constant 
‘0’. The output of this mux is dp, an active low bit which 
tells the Nexys board when to turn on the decimal point 
on. All this has the effect of constantly keeping the 
decimal point after the 4th digit (the ones digit of the 
seconds) on. 

 
III. EXPERIMENTAL SETUP 

We used the software Vivado to write vhdl code to 
implement our circuit. We also wrote a testbench in vhdl 
to simulate the circuit and test it. But a vhdl testbench in 
vivado was not enough to test our circuit for two reasons. 
First, to make sure our code would work correctly, we’d 
have to run a simulation that lasts multiple minutes, and 
Vivado simulates everything by the picosecond, so 
running the simulation properly would take a very long 
time. Second, to test the debouncer circuit, we’d have to 
see how it works on a real physical button. For this 
reason, we had to implement our circuit on a Nexys 
board to test it. The board we used was an Artix-7 
XC7A100T-1CSG324C. The expectation was that 
everything would work properly.  
 

IV. RESULTS 
The results included a functional stopwatch 

displayed on the FPGA board. It ended up having 3 
buttons, one to start and stop the time, one to clear 
everything, and one to set a lap (with a maximum 
allowance of 3 set laps). In addition to the buttons the 
stopwatch time was displayed on the 7-segment display 
and there were 3 switches to toggle between the current 
timer and the saved laps. All buttons worked as intended. 
As the code was developed, we ran into some challenges. 
For example, we had trouble designing the debouncer, 
which is why we had to get help from the internet. 

From the actual design, we saw how FSMs could be 
more useful than regular digital circuits. From lecture, 
we were able to incorporate it into our design and make 
it work. 

 
CONCLUSIONS 

      Our main takeaway was that the stopwatch was 
slightly more complex than we originally thought. 

Drafting and implementing a way to store the laps and 
be able to return to them was something that took us 
more time than we expected. The possible improvements 
we considered were adding more laps, designing it so 
trying to look at a lap before it has been stored will result 
in flashing lights, and adding a button to reset the laps 
but nothing else. All in all, we did learn a lot and were 
able to create a simple functioning stopwatch that was 
capable of basic time tracking. 
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