
Stopwatch

Nicholas Rushaj, Tolin Faraj, Samantha Peters
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: nicholasrushaj@oakland.edu, tolinfaraj@oakland.edu, samanthapeters@oakland.edu

Abstract— This project involves the design and
implementation of a digital stopwatch that is meant
to measure time in minutes, seconds, and hundredths
of a second. Functions include start, pause, lap, and
reset. The entirety of this project will be based on
concepts learned throughout the course. The
hardware testing confirmed the accuracy of the
circuit diagrams and the proper functionality of the
stopwatch. The design demonstrated the integration
of timing circuits, inputs, and outputs. Main
recommendations include adding a debouncer
component to circuits to ignore fluctuations that may
occur when pressing a button. Another
recommendation is to use a finite state machine that
can track how many laps you have stored.

I. INTRODUCTION
The goal of this project is to design a digital

stopwatch using Vivado software, implementing it onto
a Nexys FPGA Board. This report will consist of all the
features and components that will be used to create the
stopwatch itself. These features include a start, pause,
lap, and reset. The components include the clock divider,
decoders, edge detectors, counters, registers, and
multiplexers.

The motivation for this project is to deepen our
understanding of digital timing circuits and how to
implement them into real world circuits. By developing
a stopwatch, we can gain hands-on experience with all
the concepts that were taught in the actual course. A lot
of concepts that were from the course were applied to
this project. This included component designs, VHDL
codes, and how to apply all into the board for its actual
use.

The applications for this project range from a
standard stopwatch to much more advanced systems
which can be further designed.

II. METHODOLOGY
We will start the methodology by explaining the

functionality of each individual component in detail and
continue explaining how all these components come
together in the top circuit. It will not be mentioned again,
so it should be noted that every component that can store
values takes as an input the same active low CPU reset
of the Nexys board.

Figure 1: Debouncer

A. Each Component in Detail
We will start with the debouncer. The purpose of the

debouncer is to ignore the fluctuations and bouncing of
the input buttons. The structure of the circuit is shown in
Figure 1. The circuit works by storing the last and current
values of the button in D flip flops. There is a counter in
the middle of the circuit. The sclr bit of the counter is
connected through an xor gate to the current and last
values. This means that the counter will continue to
count up as long as the value of the button is stable. Once
the output of the counter reaches a certain value, which
will be a parameter of the circuit, the value of the output
is allowed to be set to the value of the button. This is
done using an equality detector circuit connected to the
enable bit of a D flip flop whose D bit is the last value
and whose Q bit is the result of the debouncer. We have
chosen a value for the parameter that requires the button
to be stable for 10 milliseconds to be valid. This creates
a delay, but it is unnoticeable to the human eye. It also
requires the button to be pressed for longer than 10
milliseconds to register, but the author of this section has
not been able to press a button quickly enough for the

circuit not to notice. The idea of this debouncer circuit
was inspired by [1].

The clock divider takes an input clock signal with a
certain period and outputs a clock signal with a period
that is an even multiple of the input period. We decided
to use a process statement to design this circuit, rather
than using a structural approach. An integer value is
incremented on the rising edge of the input clock and
resets to 0 when it reaches a certain value which is a
parameter of the circuit. At the same time as the integer
value resets, the value of the output clock inverts itself.
The ratio of the periods of the input and output clocks is
equal to the parameter value plus one multiplied by 2.

Figure 2: Synchronous Edge Detector

The synchronous edge detector is a simple circuit
whose purpose is to output a one-clock-period-width
pulse when it detects the value of the input going from
low to high. This is accomplished, as can be seen in
Figure 2, by storing the current and last values of the
input in D flip flops. The output pulse then is equal to, in
Boolean algebra, current and not last.

Figure 3: Watch

The watch is the heart of this project. The watch
outputs 6 4-bit binary coded decimal (BCD) signals, the
first two representing minutes, the middle two
representing seconds, and the last two representing
hundredths of a second. It takes as inputs a 100Hz clock,

an enable bit, and a sclr bit. If the enable bit is on, on the
rising edge of the clock, the time output by the watch
increments by one hundredth of a second. This is
accomplished, as can be seen in Figure 3, with 6 4-bit
modulo counters. The maximum value of each clock is
nine (“1001” in BCD), except for the tens digit of the
seconds, whose maximum value is five (“0101”). The
enable bit of each counter is high only when the
maximum value of each counter before it has been
reached. This way, for example, in a time of 00:15.23 the
ones digit of the hundredths is the only value that will
increment, but with a time of 01:59.99, all values but the
tens digit of the minutes will increment. Just as has been
taught in this class for registers, enable takes precedence
over sclr.

Figure 4: ASM Diagram

There is a finite state machine (FSM) used to control
how the laps are stored. There are two inputs: load and
slcr—and 6 outputs: E3, E2, E1, z3, z2, z1. There are
four states, S0, S1, S2, S3, each corresponding to how
many laps have been stored (more on this later). The
transitions and outputs of the FSM are shown in the ASM
diagram in Figure 4.

There is a priority encoder in the circuit, but it is not
a regular priority encoder. An input of “000” outputs
“00”. “001” outputs "01”. “01X” outputs “10”. “1XX”
outputs “11”. There is no z bit. The purpose of this
component will be explained in a later section.

Other circuits designed in this project include D flip
flops, T flip flops, registers, counters, a BCD-to-7seg
decoder, muxes, and adder circuits, but these are
considered fundamental enough to not need
explanations.

B. Top Circuit
The top circuit, as can be seen in Figure 5, can be

divided into three main parts: the watch control, the lap
control, and the 7-segment module control. It should be
noted that every synchronous circuit, unless otherwise
mentioned, is connected to the 100 MHz clock.

● Watch Control
The main purpose of the watch control is to

produce the time of the stopwatch is BCD. There are
three important inputs here: the 100MHz clock, a pause
button, and a clear button. The 100MHz clock is
connected to a clock divider to create an output clock of
100Hz (T = 0.01 sec). This 100Hz clock is connected
directly to the watch circuit. Both buttons are connected
to debouncers. The output of the pause debouncer is
connected to a synchronous edge detector, and the output
of the synchronous edge detector is connected to a T flip
flop. The output of the T flip flop will from here on
simply be called E. The purpose of the synchronous edge
detector and T flip flop is so that pressing the pause
button once will have the effect of simply pausing or
unpausing the watch, no matter how long the button is
held down. The signal E essentially tells us whether or
not the watch is paused. The output of the clear

F

Figure 5: Top Circuit, Divided into Three Parts

debouncer, which will from here on simply be called
clear, is connected directly to the slcr bit of the watch
circuit. The clear signal is connected to the sclr bit of the
T flip which outputs E. This is because we want resetting
the stopwatch to also pause it. This creates a problem,
since the watch will only clear when the enable bit is
high. This is why the enable bit of the watch is not
connected directly to E, but equal to, in Boolean algebra,
E or clear. The 6 4-bit outputs of the watch are
concatenated into one 24-bit signal which will from here
on be referred to as watch_time.

● Lap Control
The main purpose of the lap control is to allow the

user to store laps. The important inputs to the lap control
are as follows: the lap button, the clear signal, and the E
signal. There are three 24-bit registers which store the
vectors L1, L2, and L3, which are the laps. The D vector
of each register is connected to watch_time and the sclr
bit of each register is connected to clear. The enable bits
of each register are connected to E1, E2, and E3. These
values are controlled by the FSM. The lap button is
connected to a debouncer whose output is connected to a
synchronous edge detector. The purpose of this is so that
pressing the lap button will produce a single one-clock-
period width pulse that will allow only one of the lap
registers to be set. If we call the output of the
synchronous edge detector lap_pulse, then we can define
a signal lap_pulse to be equal to lap_pulse and E.
The purpose of this is so that the user doesn’t have the
ability to store laps when the stopwatch is paused (this
was a decision based on the way a typical cellphone’s
stopwatch works). lap_load will then be connected to the
load bit of the FSM and clear will be connected to the
sclr bit of the FSM the z1, z2, and z3 bits of the FSM are
connected to led0, led1, and led3 on the Nexys board.
The FSM assures that the following criteria are met: at
any time, if the stopwatch is reset, all the lap registers are
reset. If you have a register left for storing laps, pressing
the lap button stores the current time in the next available
lap register, unless the stopwatch is paused. If there are
no lap registers, the lap button does nothing. The LEDs
on the Nexys board help the user to know how many laps
have already been stored. That is, no LEDs on means no
stored laps, one LED on means one stored lap, etc.

● 7-Segment Module Control
The purpose of the 7-segment module control is to

allow the user to choose whether he or she wants to see
the current time or one of the laps and then to show what
the user chooses on the 7-segment module on the Nexys
board. The principal inputs to this part of the circuit are
sw2, sw1, and sw0 from the Nexys board, watch_time,
L1, L2, L3, and the 100MHz clock. The principal outputs
are the 7-bit vector CA_CG, the 8-bit vector A, and the
bit dp. The switches are connected to the priority encoder
explained above. The output of the decoder decides
whether the time will appear on the 7-segment module
or one of the laps. No switches being on means the
current time is visible. Sw2 being on (regardless of
whether sw1 and sw0 are on) means lap 3 is visible, etc.
The purpose of doing this is instead of choosing the lap
with just two switches interpreted in binary is because
the average user probably doesn’t know binary. The 2-
bit output of the decoder is then connected to the sel port
of a 4-to-1 24-bit bus mux. watch_time is connected to
the 0 port, L1 to the 1 port, L2 to the 2 port, and L3 to
the 3 port. The output of this mux will simply be called
time_viz.

The way a typical 7-segment module works is that it
is impossible to show different numbers on different
parts of the module at the same time. But it is possible to
turn all the digits off but one, show the number that
corresponds to that digit, turn it off and then turn the next
one and show the digit that corresponds to that digit, etc.
Doing this quickly enough gives the human eye the
illusion that all the digits are on at once. To do this, a
clock with a period of 1 millisecond (frequency of 1000
Hz) is needed. The 100 MHz clock is put into a clock
divider which outputs a 1KHz clock. The 1KHz clock is
connected to the clock bit of a 3-bit counter. This counter
counts repeatedly from 2 to 7. The output of the counter
is connected to the select port of an 8-to-1 4-bit bus mux.
The Nexys board has 8 digits, but only 6 are needed,
which is why the clock only counts between 2 and 7. The
signal time_viz is separated into 6 4-bit signals which
input into the ports 7 down to 2 of the mux. The ports 1
and 0 are connected to a constant value of “1111”. The
output of this mux will be called p. The output of the 2-
to-7 counter is connected to an active low decoder,
whose output is connected to the vector A. The output of
p is connected to an active low BCD-to-7seg decoder.
The output of the 7seg decoder is connected to CA_CG,
which tells the board which segments to turn on and

which to turn off. The result of this is that the value of
time_viz is constantly displayed on the 7-segment
module. The output of the 2-to-7 counter is also
connected to the select port of another 8-to-1 mux. All
the input ports of this mux are connected to a constant
‘1’, except for the 4 port which is connected to a constant
‘0’. The output of this mux is dp, an active low bit which
tells the Nexys board when to turn on the decimal point
on. All this has the effect of constantly keeping the
decimal point after the 4th digit (the ones digit of the
seconds) on.

III. EXPERIMENTAL SETUP

We used the software Vivado to write vhdl code to
implement our circuit. We also wrote a testbench in vhdl
to simulate the circuit and test it. But a vhdl testbench in
vivado was not enough to test our circuit for two reasons.
First, to make sure our code would work correctly, we’d
have to run a simulation that lasts multiple minutes, and
Vivado simulates everything by the picosecond, so
running the simulation properly would take a very long
time. Second, to test the debouncer circuit, we’d have to
see how it works on a real physical button. For this
reason, we had to implement our circuit on a Nexys
board to test it. The board we used was an Artix-7
XC7A100T-1CSG324C. The expectation was that
everything would work properly.

IV. RESULTS
The results included a functional stopwatch

displayed on the FPGA board. It ended up having 3
buttons, one to start and stop the time, one to clear
everything, and one to set a lap (with a maximum
allowance of 3 set laps). In addition to the buttons the
stopwatch time was displayed on the 7-segment display
and there were 3 switches to toggle between the current
timer and the saved laps. All buttons worked as intended.
As the code was developed, we ran into some challenges.
For example, we had trouble designing the debouncer,
which is why we had to get help from the internet.

From the actual design, we saw how FSMs could be
more useful than regular digital circuits. From lecture,
we were able to incorporate it into our design and make
it work.

CONCLUSIONS

 Our main takeaway was that the stopwatch was
slightly more complex than we originally thought.

Drafting and implementing a way to store the laps and
be able to return to them was something that took us
more time than we expected. The possible improvements
we considered were adding more laps, designing it so
trying to look at a lap before it has been stored will result
in flashing lights, and adding a button to reset the laps
but nothing else. All in all, we did learn a lot and were
able to create a simple functioning stopwatch that was
capable of basic time tracking.

REFRENCES
[1] Scott_1767, DigiKey Employee,

https://forum.digikey.com/t/debounce-logic-circuit-
vhdl/12573

