
8-Bit Microprocessor
ECE 2700 Final Project Report

Barnabas Kiss, James Lauritsen, Olumide Akeredolu, Rishi Tripathi
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
E-mails: kiss@oakland.edu, jlauritsen@oakland.edu, oakeredolu@oakland.edu, rishitripathi@oakland.edu

Abstract— The purpose of this project was to design and
implement a microprocessor capable of the typical operations
available for this type of device. The device components – an
arithmetic logic unit (ALU), control circuit, registers, and
others – process the data provided by the user. The device
functionality was created using the software Vivado with
VHDL. Microprocessors are the backbone of many real-life
applications such as embedded systems and everyday
electronics. Despite their complex appearance, microprocessors
can be understood with proper explanation.

I. INTRODUCTION
This project is about a microprocessor created on the

Nexys Artix-7 FPGA board using VHDL. Microprocessors
are the backbone of several real-life applications such as
embedded systems, everyday electronic devices, and
telecommunications. The inspiration behind this project
comes from wanting to further develop knowledge of
microprocessors and to understand the complexity behind
their functionality. Thus, the scope of this project is oriented
around a set of functions and arithmetic operations that
together form an instruction set. An 8-bit input value and an
8-bit command – an instruction for the microprocessor
inputted via switches – are provided by the user. After the
user provides the number and command using the switches,
a button on the FPGA board is pressed to execute the
operation. We based our microprocessor on a previous
implementation, and then added several upgrades including
a higher number of instructions, more general registers,
better output handling, and more.

The components of the microprocessor are the primary
guides for understanding how the device works. They are
individually easy to comprehend. These components are the
inputs, the bus multiplexor, registers, the ALU, the control
circuit, and the outputs of the circuit which are further
described in the following section. Almost all of the
components and their functionality have been taught in the
ECE 2700 lectures; however, combining these
functionalities into one larger project required further
learning beyond the knowledge obtained from the lecture.

II. METHODOLOGY

A. Control Circuit
The control circuit is the heart of the microprocessor. It

takes the incoming instructions and performs them

according to a finite state machine. For this microprocessor,
instructions are 8 bits wide. The first 4 bits are the operation
code (opcode), while the rest are split into two 2 bit
“parameters.” These parameters can refer to a register (00 is
Register 1, 01 is Register 2, and so on) or a 2-bit value.

Figure 1: Operation Code and Register Parameters

With 4-bit opcodes, the CPU can support up to 16
unique operations. To maximize the usability of this
machine, we targeted the most widely used and helpful
operations. The operations and their functions are listed
next.

Table 1: Machine Code Instructions

Code Instruction Description

0000 MOVE Move contents of Ry into Rx
0001 LOAD Move contents of input switches to Rx1

0010 INCR Increments value in Rx by Ry+12

0011 DECR Decrements value in Rx by Ry+1
0100 ADD Sets the value of ALU output to Rx+Ry
0101 SUB Sets the value of ALU output to Rx-Ry
0110 COMP Sets value of ALU output to not(Rx)
0111 MALU Moves ALU output to Rx
1000 SHR Shifts Rx to the right by Ry+1 spaces
1001 SHL Shifts Rx to the left by Ry+1 spaces
1010 AND Sets the value of ALU output to Rx

AND Ry
1011 OR Sets value of ALU output to Rx OR Ry
1100 XOR Sets the value of ALU output to Rx XOR

Ry
1101 MUL Sets value of ALU output to bottom 8

2 We add 1 to the parameter to maximize the usability of an
operation where “00” as the parameter makes no impact.

1 In some instructions, the parameter Ry is ignored.

bits of Rx*Ry
1110 MULH Sets the value of ALU output to the top 8

bits of Rx*Ry
1111 DISP Sets value of output register to Rx,

displaying the result on the 7 segment
displays

When the Begin line is brought high while the CPU is in its
waiting state, an instruction register captures the instruction
and the FSM begins executing that instruction. As an
example, the FSM diagram for the LOAD operation is given
below.

Figure 2: Load Operation FSM Diagram

Other operations are also performed in a similar manner
and with the same methodology. For brevity, a full state
machine diagram has been omitted, as it contains significant
amounts of repeated/similar instructions. However, the logic
is fairly straightforward and made as readable as possible in
the control unit VHDL file.

B. Arithmetic Logic Unit (ALU)
The Arithmetic Logic Unit (ALU) is a component in the

microprocessor that handles the logical and mathematical
computations necessary for the microprocessor to complete
an instruction set. There is a register, ALU Register A,
which handles the first input to the ALU. This register
ensures that two different numbers can be placed at the
inputs of the ALU to execute a mathematical operation.
Without the presence of the register and using the bus
directly as the input for both inputs, the microprocessor
would only be capable of computing operations for the same
number in each input port – even a simple operation such as
1+2 could not be performed since the bus would only be
able to provide one of these values at a time. Additionally,
the ALU output register allows for storage of the ALU
output and separation between the ALU and Main MUX.
With these registers in place, the ALU accepts two 8-bit
unsigned inputs and computes all operations specified in

Figure 3. The ALU continuously updates the output of each
operation, but these outputs never reach the Main MUX
unless the ALU Output Register is enabled to capture the
data. Additionally, the signal ‘op’ instructs the ALU which
operation to output to the ALU Output Register by acting as
a select inside the ALU block. Given that the number of
instructions does not use the full 4 bits, it is sensible to
implement the select in the top ALU design rather than in a
MUX sub-component. The operations available are
displayed in Figure 1 below.

Figure 3: Available ALU operations

This figure shows the instruction set of the
microprocessor.

The ALU instruction set defined in Figure 3 is essential
for the functionality of the microprocessor. Each operation
was implemented uniquely using circuits developed in the
laboratory and course lectures. The first operation “A+B”
was implemented using an 8-bit adder composed of 8
serially connected full adders. The second operation “|A-B|”
requires a sign extension and two 8-bit adders as shown in
Figure 2.

Figure 2: |A-B| Operation Circuit

This figure shows the combinational circuit required for
the second operation |A-B|.

The shifting operation was implemented such that shift
registers and a clock signal would not be necessary for
shifting the value A by B to the left or right; instead, a shift
bit is input to the shift subcomponent in a specific direction
– ‘0’ for left, ‘1’ for right. The next several operations are
purely simple combinational circuits, such as A AND B, A
OR B, and NOT(A). The final operation is the unsigned
multiplication of A and B; the maximum width that can
come from A * B is 16 bits, so there is an operation for
viewing the top 8 bits output from the multiplication and
there is an operation for viewing the bottom 8 bits output
from the multiplication so the whole result can be seen.
Overall, the ALU could be expanded to have a full 16-bit IR
code set for further functionality, however, they would be
difficult to use as the CPU itself can’t support more
instructions.

C. Bus Multiplexer (MUX)

The multiplexer is a component that allows
multiple input signals to be routed to a single output line
based on the control signal. It acts as a digital switch that
enables the microprocessor to select one of many inputs for
processing or transmission, using a minimal number of lines
or pins. In a microprocessor, multiplexers can be used for
various things such as data selections, bus sharing, address
decoding, or control signal routing. We will be using a
6-to-1 MUX in conjunction with various other components
to facilitate the bus on our microprocessor.

D. Registers

Registers in microprocessors are high-speed storage
locations used to hold data temporarily during processing.
They are essential for the operations of the microprocessor
in that they facilitate the storage and transfer of data
between different parts of the processor, such as the ALU,
control unit, and memory. There are various ways registers
can be used such as storing operands and intermediate
results, program counters, instruction registers, general
purpose, stack pointers and shift registers to name a few. We
will be using general registers to manage the storage of our
microprocessor.

III. EXPERIMENTAL SETUP
To verify that the microprocessor was capable of

executing the instruction sets provided to it, a behavioral
simulation using a test bench to check the functionality of
the microprocessor was necessary. The unit under test
(UUT) was the top file with all the individual components –
control circuit, ALU, main MUX, registers, and 7-segment
decoder – connected in the top design file itself.

There were many layers of complexity involving the
control circuit and its FSM; the code for the microprocessor
was frequently synthesized using Vivado’s built-in
‘Synthesis’ function to find simple syntax errors such as
mismatching logic vector assignments; additionally,
warnings were closely analyzed.

We quickly found it unrealistic to write complex test
benches in VHDL. As the process became more tedious, we
worked on automating it. We created a Python-based
“compiler” that took text input and generated machine code
as well as a test bench. The text input was based on basic
assembly, although it was significantly more limiting. For
example, the compiler could not generate loops or do
conditional logic. However, as these tasks were not within
the scope of this project, we did think that this was a
shortcoming.

This compiler allowed us to create and run more
complex programs. We demonstrated this ability by having
the processor calculate the highest possible Fibonacci
number which could fit within 8 unsigned bits. Upon
running the Python program to generate the test bench, we
could simply copy the file into Vivado and run a normal
simulation. We could then view the results by inspecting the
value of the output register. The code for the compiler, as
well as the code for the Fibonacci program, can be found in
the Compiler.zip file submitted alongside this report. The
output of the testbench can be found in the Appendix.

To demonstrate the functionality of the microprocessor, a
simple operation was completed as shown in the behavioral
simulation snapshots available in the Appendix. The
microprocessor behaved as expected. Additionally, a test
bench was created to simulate calculating the 13th
Fibonacci number which is the largest bit-size number this
microprocessor can compute; the result was expected to be
233 which matches its final result.

IV. RESULTS

The results of the test bench and behavior simulation
indicate the full functionality of the microprocessor – these
results can be viewed in the Appendix. The provided inputs
are loaded into the system onto a register and the system is
capable of executing the instructions provided to it as shown
by the constant LED outputs CA-CG and AN[7:0] – the
outputs to the two 7-segment displays used.

To show the physical implementation of the
microprocessor working, a simple operation of 4+4 was
performed on an Artix-7 100T board. The following
instructions were given to the board and executed by
pressing a push button on the board to begin the instruction.
The instructions are shown below:

● LOAD 0x4 R1
● LOAD 0x4 R2
● ADD R1 R2
● MALU R2
● DISP R2

This operation results in an output of 8 on the 7-segment
display, as shown in the video below.
https://drive.google.com/file/d/1Qg_sPso8u_3EUJRID-ZD
KCj5DVGtO3fQ/view?usp=drive_link

CONCLUSIONS

Microprocessors are in many electronics around us, from
cars to computers and cell phones. The ability to compute
calculations faster than any human ever could have been one
of the many cornerstones in the advancement of our
everyday technology. The project's main focus is to build a
simple processor to do some basic arithmetic. This didn’t
get accomplished without its fair share of headaches,
however. One problem that appeared was the registers not
being consistent in holding on to the data that was given to
them. Another issue that arose was the display constantly
showing zeros for everything. After extensive debugging,
we are confident that some of our issues can be attributed to
board errors. However, through perseverance, our goals
were met, and overall are satisfied with our results. We were
able to demonstrate that our microprocessor worked on our
board. We also were able to show the ability of the
microprocessor to run more complex programs, such as the
Fibonacci calculation. Microprocessors are only going to get
much more powerful in the future and this project is a great
foundation for using what was learned in class and elevating
it, to grasp the concept of how to create a CPU with digital
logic design.

APPENDIX

1. Behavioral Simulation Snapshots, inc. Fibonacci sequence
https://drive.google.com/drive/folders/1D20k-mf32_3GCoJEtrjzXFerjtaka
Zog?usp=sharing

https://drive.google.com/file/d/1Qg_sPso8u_3EUJRID-ZDKCj5DVGtO3fQ/view?usp=drive_link
https://drive.google.com/file/d/1Qg_sPso8u_3EUJRID-ZDKCj5DVGtO3fQ/view?usp=drive_link
https://drive.google.com/drive/folders/1D20k-mf32_3GCoJEtrjzXFerjtakaZog?usp=sharing
https://drive.google.com/drive/folders/1D20k-mf32_3GCoJEtrjzXFerjtakaZog?usp=sharing

REFERENCES

[1] D. Llamocca, “Laboratory 1, ECE-4710/5710.” Electrical and
Computer Engineering Department, Oakland University, 2024

[2] [2] D. Llamocca, Reconfigurable Computing Research Laboratory,
https://www.secs.oakland.edu/~llamocca/index.html (accessed Oct. 1,
2024).

[3] J. J. Jensen, “How to create a clocked process in VHDL,”
VHDLwhiz, https://vhdlwhiz.com/clocked-process/ (accessed Nov.
20, 2024).

[4] In One Lesson, “How a CPU Works,” YouTube,
https://www.youtube.com/watch?v=cNN_tTXABUA (accessed Nov.
2, 2024).

