

Course Information

INSTRUCTOR		Daniel Llamocca					
CONTACT INFO		email: llamocca@oakland.edu	email: <u>llamocca@oakland.edu</u>				
OFFICE HOURS		Tuesday 2:00 to 4:00 pm @ Room EC-438, or by appointment Virtual Office hours also available (on Moodle \rightarrow Virtual Office hours via Zoom)					
Lecturi	ES	 CRN 42360: Tuesday/Thursday 5:30 pm - 7:17 pm @ Room DH-127 (Dodge Hall) * This is an "<u>In-Person</u>" class (the online method of instruction is not available). Tests (exams, quizzes), and laboratories will not be administered online. 					
TAs		Yashwanth Naidu Tikkisettyyashwanthnaidut@oakland.eduAdam Kidwellbkidwell@oakland.eduAbd Alraham Al Nounouaalnounou@oakland.edu					
LABORA	TORY						
Section	CRN	Time	TAs				
005	42122	Wednesday 11:30 am – 2:30 pm @ Room EC-562	Abd	Adam			
007	43329	Thursday 7:30 pm – 10:30 pm @ Room EC-562	Abd	Adam	Yashwanth		
011	43419	Tuesday 11:30 am – 2:30 pm @ Room EC-562	Abd				

COURSE CATALOG DESCRIPTION: ECE 2700 – Digital Logic Design (4 credits)

Boolean algebra; number systems and arithmetic, combinational logic circuits; synchronous sequential circuits; asynchronous sequential circuits; introduction to a hardware description language (HDL). With Laboratory. (Formerly ECE 278). Prerequisite(s): EGR 240 or EGR 2400.

COURSE MATERIALS

- The course material will be hosted on Moodle (<u>moodle.oakland.edu</u>). Grades will be periodically posted via this system.
- As a backup resource, the material will also be posted at: www.secs.oakland.edu/~llamocca/Fall2023 ece2700.html
- VHDL for FPGAs Tutorial: Available at the following permanent link: <u>www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html</u>

TEXTBOOK

A textbook is not required. Class notes will be provided for every unit. Students are encouraged to use the extra references.

EXTRA REFERENCES:

- Bryan J. Mealy, James T. Mealy, *Digital McLogic Design*, Free Range Factory, 2012 (free download).
- Bryan Mealy, Fabrizio Tappero, Free Range VHDL, Free Range Factory, 2013 (free download).
- S. Brown, Z. Vranesic, Fundamentals of Digital Logic with VHDL Design, 3rd ed., McGraw Hill, 2009. (suggested)
- Peter J. Ashenden, The Student's Guide to VHDL, 2nd ed., Elsevier, 2008.

COURSE OBJECTIVES

- 1. Design and analyze combinational and sequential logic circuits. (1)
- 2. Design and analyze finite state machines. (1)
- 3. Perform addition, subtraction, and multiplication in binary arithmetic. (1)
- 4. Describe memory operation and memory addressing. (1)
- 5. Describe digital circuits using VHDL and implement them on an FPGA. (1, 6)
- 6. Perform functional and timing simulation of a digital circuit described in VHDL. (1,6)
- 7. Describe how combinational and sequential components can be used to design a datapath and control unit for implementing digital systems. (1, 2)
- 8. Work in a team environment to design a digital system and communicate the results in a written report and an oral presentation. (1, 2, 3, 6)

ABET Course Outcomes:

GRADING SCHEME:

Homeworks:	15%	Final Project:	15%
Quizzes:	10%	Midterm Exam:	20% (October 17 th , 5:30-7:17 pm)
Laboratory:	20%	Final Exam:	20% (December 12 th , 7:00 – 10:00 pm)

 Homeworks: Homework assignments are meant to strengthen your conceptual understanding of the topics. Completing homework assignments is a key component of this course as it will help students master the course material and prepare them for the exams.

Homeworks will be posted according to the schedule (green rectangles). Students have one week to turn in the completed assignments (via Moodle). <u>Late submissions are NOT accepted</u>.

- **Quizzes:** They will have a duration of 20 minutes at the beginning of class.
- **Exams:** Closed-books, closed-notes, in-class exams. The final exam will be a comprehensive test that will cover the whole syllabus. Students are not allowed to take the exams neither before nor after the exam date. Make-up exams are given *only* under extreme circumstances (e.g.: medical emergency, jury duty).
- **Laboratory:** This important component of the class will reinforce your understanding of the topics. There will be six (6) lab experiments throughout the semester.

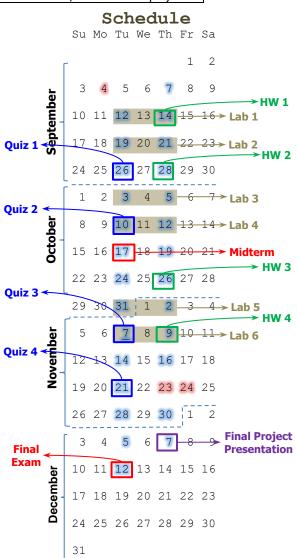
TAs will be present <u>every week</u> during the regularly scheduled laboratory times. Students can work during those times or at any other time and place.

Depending on the lab assignment, students have 1 or 2 weeks to complete them and have them checked off by the TA.

* There is a late policy on laboratory assignments.

 Final Project: Students will work in groups (up to 4) in a Final Project. Each group will prepare an oral presentation and submit a final report. Presentations will take place on December 7th.

GRADE ASSIGNMENT:


96-100	А	4.0
90-95	A-	3.7
85-89	B+	3.3
80-84	В	3.0
72-79	B-	2.7
66-71	C+	2.3
60-65	С	2.0
56-59	C-	1.7
53-55	D+	1.3
50-52	D	1.0
49 and below	F	0.0

LABORATORY MATERIALS

Hardware: Nexys[™] A7 FPGA Trainer Board - Option: A7-50T (you can also use the Nexys[™]-4 DDR Artix-7 FPGA Board) ✓ To order: <u>https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/</u>

Go to: Get Academic Pricing (there might be some discounts) If you do not plan to take ECE4710, you can use the Basys3 Trainer Board:

- To order: <u>https://store.digilentinc.com/basys-3-artix-7-fpga-trainer-board-recommended-for-introductory-users/</u> Go to: Get Academic Pricing (there might be some discounts)
- Software: Vivado ML Standard edition (2022.1 version or earlier) (free software, formerly known as Vivado HL Webpack)
 ✓ To download: https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html

Introduction to Logic Sum-of-Products and Product-of-Sums forms Circuits Logic Cates. Timing diagrams Optimized Basic Techniques Implementation of Logic Functions Karnaugh Maps Logic Levels, CMOS Logic gates Implementation Implementation Technology Insigned Variable Tri-state buffers, Transmission Gates Programmable Logic Devices, Field Programmable Gate Arrays Unsigned integer numbers Binary representation Octal and hexadecimal representation Octal and hexadecimal representation Octal and hexadecimal representation Octal and hexadecimal representation Multiplication of integer numbers Multiplication of signed numbers Introduction to Fixed-point arithmetic Multiplication of signed numbers Combinational Circuits Complex circuits Multiplicers, De-multiplexers, Shanon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Flip flops and latches Registers, shift registers Synchronous Sequential Circuits Basic circuits Flip flops and latches Registers, shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Se					
Circuits - Sum-Or-Products and Poduct-Or-Sums Johns Optimized Implementation of Logic Functions - Basic Techniques Implementation Technology - Quine-MCCluskey algorithm Implementation Technology - Logic Levels, CMOS Logic gates Implementation Technology - Programmable Logic Devices, Field Programmable Gate Arrays Implementation Technology - Programmable Logic Devices, Field Programmable Gate Arrays Implementation Technology - Unsigned integer numbers Binary representation Addition and subtraction Number Systems and Computer Arithmetic Signed integer numbers Binary representation Addition and subtraction Signed integer numbers Binary representation Addition and subtraction Addition and Subtraction Multiplication of Integer numbers Array multiplier for unsigned numbers Multiplication of signed numbers Basic circuits Basic circuits Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Complex circuits Complex circuits Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Synchronous Sequential Circuits Basic circuits Prity generators and parity checkers Finite State Registers, shift registers Parallel acccess shift registers: parallel-to-serial/serial-to-par	Introduction to Logic	 Boolean Algebra 			
Optimized Logic Cates. Timing diagrams Optimized Basic Techniques Implementation of Logic Functions Quine-McCluskey algorithm Implementation Technology Logic Levels, CMOS Logic gates Implementation Technology Practical aspects: propagation delay, noise margin, hazards Programmable Logic Devices, Field Programmable Gate Arrays Binary representation Octal and hexadecimal representation Addition and subtraction Signed integer numbers Signed integer numbers Binary representation Addition and subtraction Signed integer numbers Multiplication of integer numbers Multiplication of integer numbers<					
Implementation of Logic Functions · Karnaugh Maps Quine-McCluskey algorithm Implementation Technology - Logic Levels, CMOS Logic gates Implementation Technology - Tri-state buffers, Transmission Gates • Programmable Logic Devices, Field Programmable Gate Arrays Binary representation Octal and hexadecimal representation Addition and subtraction Number Systems and Computer Arithmetic Signed integer numbers Signed integer numbers Binary representation Addition and subtraction Multiplication of integer numbers Array multiplier for unsigned numbers Multiplication of integer numbers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. • Binary Codes - Introduction to Fixed-point arithmetic • Introduction to Fixed -point arithmetic Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. • Basic circuits Complex circuits Arithmetic Logic Unit (ALU) Design Barrel shifter • Sair circuits Basic circuits Filip flops and latches Registers, shift registers Synchronous Sequential Circuits Basic circuits Parallel access Memory • Finite State Machines More and Mealy state Models Marchones Design Steps: State Diogram, State Table, State assig	Circuits				
Logic Functions • Quine-McCluskey algorithm Implementation Technology • Logic Levels, CMOS Logic gates • Tri-state buffers, Transmission Gates • Practical aspects: propagation delay, noise margin, hazards • Programmable Logic Devices, Field Programmable Gate Arrays • Binary representation • Octal and hexadecimal representation • Octal and hexadecimal representation • Outine-function • Addition and subtraction • Binary representation • Addition and subtraction • Binary codes • Binary representation • Binary codes • Introduction to Fixed-point arithmetic • Binary Codes • Introduction to Fixed-point arithmetic • Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. • Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. • Decoders, Encoders, Comparators Code-up Tables Complex circuits Arithmetic Logic Unit (ALU) Design Barrel Shifter Flip flops and latches Registers, Shift registers Parallel access Memory Finite State Moore and Mealy state Models Arithmese Design Tsps: State Diagram, State Table, State assignments.	Optimized	 Basic Techniqu 	les		
Implementation Technology • Logic Levels, CMOS Logic gates • Tri-state buffers, Transmission Gates • Practical aspects: propagation delay, noise margin, hazards • Programmable Logic Devices, Field Programmable Gate Arrays Binary representation Octal and hexadecimal representation Addition and subtraction Signed integer numbers · Binary representation Addition and subtraction · Binary representation Addition and subtraction · Binary representation Addition of integer numbers · Binary Codes · Introduction to Biary Codes · Introduction to Basic circuits Complex circuits Secorders, Ecoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Look-up Tables Arithmetic Logic Unit (ALU) Design Barel shifter Synchronous Sequential Circuits Sequential Circuits Sequential Circuits Sine State More and Mealy state Models Machines (FSMs) Algorithmic State Models Actimes Logis Chargers, State Table, State assignments. Algorithmic State Machine (ASM) charts Introduction to Digital vibital system (or special-purpose processor) components: Datapath circuit, Control Circuit	Implementation of				
Implementation Technology Tri-state buffers, Transmission Gates Practical aspects: propagation delay, noise margin, hazards Programmable Logic Devices, Field Programmable Gate Arrays Number Systems and Computer Arithmetic Binary representation Octal and hexadecimal representation Addition and subtraction Addition and subtraction Multiplication of integer numbers Binary Codes Binary Codes Introduction to Fixed-point arithmetic Combinational Circuits Basic circuits Synchronous Sequential Circuits Basic circuits Synchronous Sequential Circuits Filip flops and latches Registers, shift registers Parallel access shift registers Par	Logic Functions				
Implementation Technology Tri-state buffers, Transmission Gates Practical aspects: propagation delay, noise margin, hazards Programmable Logic Devices, Field Programmable Gate Arrays Number Systems and Computer Arithmetic Binary representation Octal and hexadecimal representation Addition and subtraction Addition and subtraction Multiplication of integer numbers Binary Codes Binary Codes Introduction to Fixed-point arithmetic Combinational Circuits Basic circuits Synchronous Sequential Circuits Basic circuits Synchronous Sequential Circuits Filip flops and latches Registers, shift registers Parallel access shift registers Par		 Logic Levels, C 	MOS Logic gates		
Technology Practical aspects: propagation delay, noise margin, hazards Programmable Logic Devices, Field Programmable Gate Arrays Binary representation Octal and hexadecimal representation Addition and subtraction Number Systems and Computer Arithmetic Signed integer numbers Binary representation Multiplication of Array multiplier for unsigned numbers Multiplication of Array multiplier for unsigned numbers Binary Codes Basic circuits Basic circuits Complex circuits Complex circuits Multiplication of signed numbers Synchronous Basic circuits Multiplication of signed numbers Synchronous Complex circuits Look-up Tables Synchronous Basic circuits Parity generators and parity checkers Synchronous Basic circuits Parity fegisters Basic circuits Parilel access shift registers Sequential Circuits Parallel access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts	Implementation				
• Programmable Logic Devices, Field Programmable Gate Arrays Number Systems and Computer Arithmetic Unsigned integer numbers numbers Binary representation Addition and subtraction Signed integer numbers Binary representation Addition and subtraction Octal and hexadecimal representation Addition and subtraction Multiplication of integer numbers Array multiplier for unsigned numbers • Binary Codes • Binary Codes • Introduction to Fixed-point arithmetic Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Look-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifter Synchronous Sequential Circuits Flip flops and latches Registers, shift registers: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Machines (FSMs) More and Mealy state Models Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) charts					
Number Systems and Computer Arithmetic Unsigned integer numbers Binary representation Addition and subtraction Signed integer numbers Binary representation Addition and subtraction Addition and subtraction Multiplication of integer numbers Array multiplier for unsigned numbers Multiplication of signed numbers • Binary Codes • Introduction to Fixed-point arithmetic • Introduction to Fixed-point arithmetic Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Look-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifter Synchronous Sequential Circuits Basic circuits Finite State Machines Parallel access shift registers: Parallel access shift registers: parallel access Memory Finite State Machines Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit	5,				
Number Systems and Computer Arithmetic Onsigned integer numbers Octal and hexadecimal representation Addition and subtraction Numbers Systems and Computer Arithmetic Signed integer numbers Binary representation Addition and subtraction Multiplication of integer numbers Multiplication of signed numbers • Binary Codes • Introduction to Fixed-point arithmetic • Binary Codes • Introduction to Fixed-point arithmetic • Basic circuits Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Look-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifter Synchronous Sequential Circuits Flip flops and latches Registers, shift registers Basic circuits Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Sequential Circuits Finite State Machines Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts					
Number Systems and Computer Arithmetic Signed integer numbers Binary representation Addition and subtraction Multiplication of integer numbers Binary representation Addition and subtraction Addition and subtraction Multiplication of integer numbers Array multiplier for unsigned numbers Addition and subtraction Introduction to Combinational Circuits Binary Codes Introduction to Fixed-point arithmetic Basic circuits Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Look-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifter Synchronous Sequential Circuits Basic circuits Flip flops and latches Registers, shift registers Basic circuits Parallel access shift registers Parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Machines Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. (FSMs) Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Number Systems and Computer Arithmetic Signed integer numbers Binary representation Addition and subtraction Multiplication of integer numbers Array multiplier for unsigned numbers • Binary Codes • Introduction to Fixed-point arithmetic • Introduction to Fixed-point arithmetic • Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Complex circuits Arithmetic Logic Unit (ALU) Design Barrel shifter Synchronous Sequential Circuits Flip flops and latches Registers, shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Sequential Circuits Finite State Machines Moore and Mealy state Models Introduction to Digital Oser and Mealy state Models Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit		integer numbers			
Number Systems and Computer Arithmetic numbers Addition and subtraction Multiplication of integer numbers Array multiplier for unsigned numbers • Binary Codes • Binary Codes • Introduction to Fixed-point arithmetic • Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Look-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifter Synchronous Sequential Circuits Basic circuits Finite State Machines Flip flops and latches Registers, shift registers Finite State Machines Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) charts		Signed integer			
Computer Arithmetic Multiplication of integer numbers Array multiplier for unsigned numbers • Binary Codes • Binary Codes • Introduction to Fixed-point arithmetic • Basic circuits Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Combinational Circuits Complex circuits Synchronous Sequential Circuits Basic circuits Finite State Machines (FSMs) Flip flops and latches Registers: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Machines (FSMs) Moore and Mealy state Models Design State Table, State assignments. Algorithmic State Machine (ASM) charts Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit		5 5			
integer numbers Multiplication of signed numbers • Binary Codes • Introduction to Fixed-point arithmetic • Introduction to Fixed-point arithmetic Multiplexers, De-multiplexers, Shannon Expansion Theorem Basic circuits Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Complex circuits Look-up Tables Complex circuits Arithmetic Logic Unit (ALU) Design Barrel shifter Basic circuits Synchronous Parallel access shift registers: Sequential Circuits Flip flops and latches Registers, shift registers: Parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts	Computer Arithmetic				
 Binary Codes Binary Codes Introduction to Fixed-point arithmetic Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Look-up Tables Complex circuits Synchronous Sequential Circuits Flip flops and latches Registers, shift registers Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts 					
• Introduction to Fixed-point arithmetic Combinational Circuits Basic circuits Multiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkers Look-up Tables Look-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifter Barrel shifter Synchronous Sequential Circuits Flip flops and latches Registers, shift registers Farallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. (FSMs) Introduction to Digital Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Combinational CircuitsMultiplexers, De-multiplexers, Shannon Expansion Theorem Decoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkersComplex circuitsLook-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifterSynchronous Sequential CircuitsFlip flops and latches Registers, shift registers Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access MemoryFinite State Machines (FSMs)Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) chartsIntroduction to Digital• Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit			Fixed-noint arithmetic		
Combinational CircuitsBasic circuitsDecoders, Encoders, Comparators Code Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkersComplex circuitsLook-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifterSynchronous Sequential CircuitsFlip flops and latches Registers, shift registers: Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access MemoryFinite State Machines (FSMs)Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) chartsIntroduction to Digital• Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Combinational CircuitsBasic CircuitsCode Converters: BCD to 7-segment, Gray to BCD, etc. Parity generators and parity checkersCircuitsLook-up TablesComplex circuitsArithmetic Logic Unit (ALU) Design Barrel shifterSynchronous Sequential CircuitsBasic circuitsFinite State Machines (FSMs)Finite State Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) chartsIntroduction to Digital• Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Combinational CircuitsParity generators and parity checkersCircuitsLook-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifterSynchronous Sequential CircuitsBasic circuitsFinite State Machines (FSMs)Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) chartsIntroduction to Digital• Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit		Basic circuits			
CircuitsLook-up Tables Arithmetic Logic Unit (ALU) Design Barrel shifterSynchronous Sequential CircuitsBasic circuitsFlip flops and latches Registers, shift registers Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access MemoryFinite State Machines (FSMs)Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments.Introduction to Digital• Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit	Combinational				
Complex circuitsArithmetic Logic Unit (ALU) Design Barrel shifterSynchronous Sequential CircuitsFlip flops and latches Registers, shift registers Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access MemoryFinite State Machines (FSMs)Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) chartsIntroduction to Digital• Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit	Circuits				
Synchronous Basic circuits Flip flops and latches Registers, shift registers Sequential Circuits Basic circuits Flip flops and latches Registers, shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit		Complex circuits			
Synchronous Basic circuits Flip flops and latches Registers, shift registers Sequential Circuits Basic circuits Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Moore and Mealy state Models Design Steps: State Diagram, State Table, State assignments. (FSMs) Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Synchronous Basic circuits Registers, shift registers Sequential Circuits Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Counters: synchronous, BCD, Ring, Johnson Random Access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts					
Synchronous Basic circuits Parallel access shift registers: parallel-to-serial/serial-to-parallel conversion Sequential Circuits Counters: synchronous, BCD, Ring, Johnson Random Access Memory Random Access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts		Basic circuits			
Synchronous Counters: synchronous, BCD, Ring, Johnson Sequential Circuits Random Access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Sequential Circuits Random Access Memory Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts					
Finite State Moore and Mealy state Models Machines Design Steps: State Diagram, State Table, State assignments. (FSMs) Algorithmic State Machine (ASM) charts Introduction to Digital • Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Machines (FSMs) Design Steps: State Diagram, State Table, State assignments. Algorithmic State Machine (ASM) charts Introduction to Digital Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit	Sequential Circuits	-			
(FSMs) Algorithmic State Machine (ASM) charts Introduction to Digital Digital system (or special-purpose processor) components: Datapath circuit, Control Circuit					
Introduction to Digital					
		(FSMs)	Algorithmic State Machine (ASM) charts		
System Design - Design examples. Small processor, smit-and-add multiplier, sequential divider.	Introduction to Digital System Design		(or special-purpose processor) components: Datapath circuit, Control Circuit es: Small processor, shift-and-add multiplier, sequential divider.		

VHDL: For every topic, an aspect of VHDL description will be explored.

Introduction	 Design Flow: Design Entry, Functional Simulation, Mapping, Timing Simulation, Implementation Data Types VHDL Description: Logic Gates VHDL Testbench Generation
Concurrent Description	 Concurrent statements: 'with-select', 'when-else' Combinational circuits description: (priority) encoder, decoder, comparator, mux, de-mux.
Behavioral Description	 Asynchronous processes Behavioral description of Combinational circuits: (priority) encoder, decoder, comparator, mux. Sequential statements: `if-else', `case', `for-loop'
Structural Description	Hierarchical design: Use of port-map, for-generate, if-generate.Examples: Adder, multiplier, Arithmetic Logic Unit, Look-up Table
Sequential Circuits	 Testbench: generating clock stimulus Asynchronous processes: Latches Synchronous processes: flip-flops, counters, registers Description of Finite State Machines
Parameterization	Simple techniquesUse of for-generate, if-generate.

OUTLINE OF COURSE TOPICS, ASSOCIATED ASSIGNMENTS AND REFERENCE MATERIAL. TOPICS SHADED IN GRAY: IN-PERSON LECTURES (APPROXIMATE, VIDEOS AVAILABLE) TOPICS SHADED IN RED: IN-PERSON LECTURES FOR WHICH PANOPTO VIDEOS ARE AVAILABLE

Week		Unit	Topics	Associated Material	Assignments	
1 09/07 1			Class policies. Class structure	Syllabus		
		1	Boolean Algebra	Lecture Notes – Unit 1		
		1	Canonical Forms, Logic Gates, Timing Diagram	Lasters Natas Linit 2		
2	09/12	1	<i>VHDL</i> : logic gates, testbench generation. <i>Experiment</i> : First VHDL example	Lecture Notes – Unit 2 VHDL for FPGAs Tutorial # 1	Laboratory 1	
	09/14	2	K-maps: 2, 3, 4 variables. "Don't care" outputs. Quine McCluskey algorithm. VHDL: Use of std_logic_vector	Lecture Notes – Unit 2 VHDL for FPGAs Tutorial # 1	Homework 1	
	09/19	2	VHDL: structural description. Experiment: 4-bit adder	Lecture Notes – Unit 2 VHDL for FPGAs Tutorial # 4	Laboratory 2	
3	09/21	3	Logic Levels, CMOS Logic gates. Tri-state buffers Propagation delay, hazards Programmable Logic Devices, Field Programmable Gate Arrays	Lecture Notes – Unit 3		
4	09/26	4	Binary representations Unsigned integer numbers. Addition and subtraction <i>Experiment</i> : 4-bit subtractor	Lecture Notes – Unit 4 VHDL for FPGAs Tutorial # 4	Quiz 2	
-	09/28	4	Signed (SM, 1C, 2C) integer numbers. Addition and subtraction Multiplication of integer numbers. Binary codes Introduction to Fixed-Point Arithmetic	Lecture Notes – Unit 4	Homework 2	
	10/03	4	Design Examples	Lecture Notes – Unit 4	Laboratory 3	
	10/00	5	Multiplexor, Demultiplexor, Decoder, Encoder, LUT	Lecture Notes – Unit 5	поотиоту Э	
5	10/05	5	Examples: Timing diagrams, 3-variable function with 4-to-1 MUX VHDL: Concurrent description: with-select, when-else Experiment: 4-to-16 decoder out of five 2-to-4 decoders	Lecture Notes – Unit 5 VHDL for FPGAs Tutorial # 2		
6	10/10	5	Shannon's Expansion VHDL: Asynchronous processes	Lecture Notes – Unit 5 VHDL for FPGAs Tutorial # 3	Quiz 2 Laboratory 4	
	10/12	5	ALU, Barrel Shifter. Midterm preparation	Lecture Notes – Unit 5		
	10/17		Midterm Exam			
7	10/19	6	Latches and flip flops. Timing Diagrams. Examples. <i>VHDL</i> : flip flop description	Lecture Notes – Unit 6		
	10/24	6	Registers, shift-registers, counters. Timing diagrams. Examples	Lecture Notes – Unit 6		
8	10/24	6	VHDL: description of registers, counters	VHDL for FPGAs Tutorial # 5		
0	10/26	6	Counter: accumulator-based design. RAM. Examples <i>Experiment</i> : 2-bit counter implementation.	VHDL for FPGAs Tutorial # 5	Homework 3	
	10/31	6	Finite State Machines. Moore and Mealy FSMs. Timing Diagrams. Circuits: Sequence Detectors, Pulse Detector	Lecture Notes – Unit 6	Laboratory 5	
9 1	11/02	6	VHDL: FSM description. <i>Experiment</i> : Sequence detector implementation Algorithmic State Machine (ASM) Charts). Exercises. <i>Experiment</i> : Sequence detector implementation (ASM)	Lecture Notes – Unit 6 VHDL for FPGAs Tutorial # 6		
		6	Exercises with ASM charts. Experiment: Arbiter implementation (ASM)	Lecture Notes – Unit 6	Quiz 3	
10	11/07	7	Digital Systems: Overview. RGB LED Control. Experiment: RGB LED Control	Lecture Notes – Unit 7 VHDL for FPGAs Tutorial #7	Laboratory 6	
	11/09	7	Digital Systems: VHDL implementation, standard blocks, Timing Diagram.	Lecture Notes – Unit 7	Homework 4	
11	11/14	7	7-segment serializer + VHDL description. UART, PS2 Keyboard, Stopwatch. Example: Special counter: Timing Diagram.	Lecture Notes – Unit 7 VHDL for FPGAs Tutorial # 7	Laboratory 6	
11/2	11/16	7	Experiment: 7-segment serializer. Traffic light controller. Exercises. uP: intro	VHDL for FPGAs Tutorial # 7		
12	11/21	7 7	Timing Diagrams: Bit-counting circuit <i>Experiment</i> : Bit-counting circuit implementation	Lecture Notes – Unit 7	Quiz 4	
13	11/28	7	Experiment: Special counter implementation	Lecture Notes – Unit 7		
	11/30	7 1/30 7 7	Timing Diagrams: Sequential multiplier Experiment: Sequential multiplier implementation	Lecture Notes – Unit 7		
			Simple Microprocessor	Lecture Notes - Offic /		
	12/05	7	Final Exam Preparation			
14	12/03	/	Final Project – Presentation			

TECHNICAL ASSISTANCE

- If you have general questions about the course (such as due dates, content, etc.) or trouble accessing any of the content in this course, please contact the instructor.
- For Moodle technical issues that you cannot resolve on your own, please contact the e-LIS (e-Learning and Instructional Support) office:
 - ✓ e-LIS Helpdesk Phone: (248) 805-1625
 - ✓ Submit a Moodle help ticket

REQUIRED TECHNOLOGY AND BACKUP PLAN

- To fully participate in this class, you will need an internet connected computer with the most updated version of your favorite web browser installed.
 - ✓ In the event that your computer crashes or internet goes down, it is essential to have a "backup plan" in place where you are able to log in using a different computer or travel another location that has working internet.
 - ✓ Students can access the SECS lab software (including Vivado) via <u>Remote Desktop service</u>. For assistance, contact the <u>SECS technology office</u>.
 - This can be helpful for code design, syntax checking, and simulation. However, for hardware verification, students
 need to physically connect the FPGA Board to the computer and test the circuit on the board (this step cannot be
 done remotely).
- Your computer should be able to run the Vivado software. Go <u>here</u> for a description of operating system support.
- Any files you intend to use for your course should be saved to a cloud solution (Google Drive, Dropbox, etc.) and not to a local hard drive, USB stick or external disk. Saving files this way guarantees your files are not dependent on computer hardware that can fail.
- **Homeworks**: They are posted as pdf files, and students need to post their work as pdfs. In order to do this, students need to be proficient in editing pdfs or generating pdfs out of scanned pages or pictures. It is the student's responsibility to:
 - ✓ Ensure that the submitted file is correct. Corrupted, unrelated, or invalid files will be assigned **0** (no exceptions).
 - \checkmark Submit the assignment on time (by 11:59 pm on the due date). Late submissions will <u>NOT be accepted</u>.
- In the event of a snow day that coincides with a quiz or exam, the test will be administered online. The instructor will post
 the quiz or exam as a pdf file and students need to post their work as a pdf file. In order to do this, students need to be
 proficient in editing pdfs or generating pdfs out of scanned pages or pictures.

CLASS POLICIES

• The instructor is expected to:

- ✓ Grade assignments within a week (or two when it comes to homeworks) of the assignment deadline.
- \checkmark Login into the course every day, at least 5 days a week.
- $\checkmark\,$ Respond to emails and to Q&A forums replies within 1-2 days.

Students are expected to:

- \checkmark Ensure that their computer is compatible with Moodle.
- ✓ Follow the calendar of events and complete all assignments by their deadline. Students are responsible for ensuring the timely and correct submission of their assignments.
- ✓ Respond to emails within 2 days.
- ✓ Participate in a thoughtful manner.
- ✓ Respect rules of etiquette
 - Respect your peers and their privacy.
 - Use constructive criticism.
 - Refrain from engaging in inflammatory comments.
- **E-mail communication**: The instructor will <u>only</u> respond to emails from students that use their Oakland.edu account. Answering student emails from an email other than an Oakland.edu email is in violation of FERPA because the identity of the sender or receiver cannot be verified.
- **Course Questions & Answer Forum**: Students are encouraged to use this forum to post questions (associated with the course content) that they deem of interest to their classmates. The instructor will intervene periodically.
- **Laboratory**: Students must be aware of their Laboratory section (e.g.: 002, 003, 004, 005, ...). This will be used to determine whether a student is late in their laboratory submission. Students are advised to attend on the day of their respective Laboratory Section. However, students can attend any other Laboratory Section if there is space available. Students will be able to complete a TA evaluation form at the end of the semester.
 - ✓ For every laboratory, students must demo their work to the TA. Then, they must submit their work files to Moodle. Work files submitted without demoing <u>will not be considered</u>.

- Once a student demoes, the TA will sign off the lab sheet and keeps it. It is strongly recommended that students keep a digital copy of the signed sheet as proof of work.
- ✓ Note that the laboratory work is <u>individual</u>, and students are not allowed to submit their work in groups.
- <u>COVID-19-guidelines</u>: Students are strongly advised to refer to the following <u>site</u> for up to date information regarding Daily Health Screenings, Masking, Social Distancing, etc. Classroom procedures are outlined <u>here</u>.
 - ✓—Students can only join the classroom or laboratory when they are cleared with the appropriate green banner display on the Daily Screening Form.
 - ✓—OU has instituted a mandatory indoor mask policy on campus regardless of vaccination status. A properly worn mask must cover the nose and mouth. Face shields alone will NOT serve to meet the mandatory mask policy. If a student comes to the classroom or laboratory without a mask (or improperly worn), the instructor or TA will ask the student to properly put a mask or leave.
 - ✓—OU takes these guidelines very seriously. Any non-compliance incident will be immediately referred to the Dean of Students' Office (OUPD may be called if a student is disruptive). The instructor or TA may cancel the class lecture or laboratory session for the day.
- Academic conduct policy: All members of the academic community at Oakland University are expected to practice and uphold standards of academic integrity and honesty. Academic integrity means representing oneself and one's work honestly. Misrepresentation is cheating since it means students are claiming credit for ideas or work not actually theirs and are thereby seeking a grade that is not actually learned. Academic dishonesty will be dealt with seriously and appropriately. Academic dishonesty includes, but it is not limited to cheating on examinations, plagiarizing the works of others, cheating on lab reports, unauthorized collaboration in assignments, hindering the academic work of other students.
 - ✓ Any instances of Academic misconduct will be referred to the Dean of Students' Office. Students involved in allegations of academic misconduct are strongly advised to have an adviser (OU faculty, staff, or student) to offer support to the student.
- Special Considerations: Students with disabilities who may require special consideration should make an appointment with campus Disability Support Services, 106 North Foundation Hall, phone 248 370-3266. Students should also bring their needs to the attention of the instructor as soon as possible. For academic help, such as study and reading skills, contact the Academic Skills/Tutoring Center, 103 North Foundation Hall, phone 248 370-4215.
- Add/Drops: The university policy will be explicitly followed. It is the student's responsibility to be aware of deadline dates for dropping courses.
- Attendance: It is assumed that the students are aware of and understand the university attendance policy. Attendance is
 mandatory and maybe monitored. Students are responsible for all material covered in classes that they miss. There will be
 no excuses for being late to quizzes/exams.
- Athlete Excused Absences: Students shall inform the instructor of dates they will miss class due to an excused absence prior to the date of that anticipated absence. For activities such as athletic competitions whose schedules are known prior to the start of a term, students must provide their instructors during the first week of each term a written schedule showing days they expect to miss classes. For other university excused absences, students must provide the instructor at the earliest possible the dates that they will miss.
- **Special Circumstances:** The instructor should be notified as early as possible regarding any special conditions or circumstances which may affect a student's performance during the course timeframe (e.g., medical emergencies, family circumstances).
- Mental Health Resources: Oakland University is committed to advancing the mental health and well-being of its students. If you or someone you know is feeling overwhelmed, depressed, and/or in need of support, services are available. For help, contact the OU Counseling Center in the Human Health Building at (248) 370-3465 or the SEHS Counseling Center at 250A Pawley Hall, (248) 370-2633, https://oakland.edu/counseling/sehs-cc/. Student resources can also be found at https://www.oakland.edu/deanofstudents/student-health-safety-resources/. For immediate 24/7 services contact Common Ground at https://commongroundhelps.org/#/ via chat or call or text the word "hello" to 1-800-231-1127.
- **Cellphones**: A ringing cellphone going off during a lecture is disruptive to other students as well as the instructor. Students are strongly advised to set their cellphones to vibrate (not ringing) and leave the classroom discretely to answer the phone.