
4-way Traffic Light

Nolan Mittison, Davio Mazzella
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: ndmittison@oakland.edu, daviomazzella@oakland.edu

Abstract—A 4-way traffic light is used to organize traffic and
provide a safe way to cross an intersection. It was found that a
breadboard could be used in conjunction with a Nexys A7
100-T to simulate an intersection. While working out how to
implement two finite state machines, a multiplexer between
both state machines allowed for an easy switch between the two
modes. Overall, the project properly demonstrated how a
traffic light is designed and implemented using VHDL code
while incorporating a day/night system for a more
comprehensive solution for traffic safety.

I. INTRODUCTION

This project is a 4-way traffic light consisting of
forwards, backwards, left, and right directions. In addition,
left turn arrows have been implemented for all four
directions to increase safety. The physical lights are
presented using breadboards wired with light emitting
diodes driven by a Nexys A7 100-T. This project utilizes a
counter that generates a pulse every one second to determine
state for the traffic light’s finite state machine. This traffic
light uses two separate state machines to represent day and
night.

This traffic light will create a safer driving
environment, directing vehicles in a consistently safe,
efficient manner. A period where a yellow light is active
before each change to red, so as to give a driver time to slow
to a stop. This controller was designed primarily with the
safety of those drivers who may be navigating the
intersection in mind.

II. METHODOLOGY

Comparators were created in order to evaluate
whether an appropriate amount of time had passed between
light changes. This allows for proper timing while keeping
the entire project driven off of one clock. A selector switch
on the A7 was implemented in order to switch modes
between day and night, whilst a breadboard display was
used to give visual aid to the project (Figure 1). The greatest
design challenge was in implementing two FSMs and
getting them to work together without conflict.

A. Finite State Machine
The 4-Way Traffic Light consists of two finite state

machines. One controls the timing of the daylight mode
(Figure 2), whilst the other controls the nighttime (Figure 3).
Both finite state machines have twelve outputs each,
connecting to a 2 to 1 multiplexor before continuing to their
respective LEDs. The multiplexer allows for the switching
between daylight and nighttime cycles with a switch on the
Nexys Board.

B. Multiplexers
To switch between modes, twelve 2-to-1 multiplexers

were utilized. Both finite state machines are capable of
separately generating signals to drive the traffic light's
LEDs, requiring a way for the system to choose between the
two. Multiplexers were the chosen method to accomplish
this. All of the multiplexers are linked to the same mode
switch, allowing all lights to be altered concurrently.

C. Clocks
In order to properly change states in both cycles, a

clock connected to five comparators was created. Whilst in
day mode, the traffic light utilizes four, five, 15 , and 20
second comparators.When in night mode, only one
comparator is used in order to create a blinking effect. This
can be seen in figure 5, where a one second comparator is
used. The counter sends out a pulse every second. The
accumulator counts these seconds which are evaluated by
the comparator to determine the state of the relevant FSM.
Working with multiple comparators allows the program to
follow a set path while minimizing the amount of code used.
Use of a single counting circuit for both finite state
machines eliminates the risk of the clocks becoming out of
sync with one another. The process taken by the
comparators can be seen within figure 2, where the timing
diagrams affect each other as the counter is active.

III. EXPERIMENTAL SETUP
A test bench within the VHDL software was

utilized to ensure the program worked properly before being
implemented on hardware. To verify proper operation of
the traffic controller within hardware, an A7 100t FPGA
was used by connecting it to a breadboard with wires and
representative LEDs attached as shown in Figure 1. Four
breadboards were used to simulate a four-way intersection



with a left turn lane. Within the A7 100t FPGA board, two
switches were used to start the cycle and change between
day and night mode.

For software, Vivado was used to write and
simulate the VHDL necessary to program the A7 FPGA.
Generic components were borrowed from [1] in the
construction of the project. Each generic component used is
properly marked as such within its individual VHDL file.
The state tables for both finite state machines are laid out in
tables 1 and 2.

IV. RESULTS

Proper timing operation was observed through a
behavioral simulation as shown in Figure 2. Initial versions
could not be implemented in hardware due to a multiple
driver issue. The problem was found to be in the way that
the two FSMs were implemented. Both were trying to send
conflicting signals to the same place. To solve this, a
multiplexor controlled by the mode was implemented
between them so that signals would only be used from the
relevant machine. The video attached (Video of Working
Project) shows the sequence used in the block diagram
(Figure 3) when connected to the external hardware (Figure
1). Once both FSMs were correctly implemented within the
project, the results shown matched exactly with
expectations.

CONCLUSIONS

This project demonstrates the utility of simple
components when arranged meaningfully. It required
seamless integration of the counter with the FSMs, while
ensuring that the pulses generated by the counter were slow
enough to allow the LEDs to change at a rate visible to the
human eye. It required knowledge of the A7’s physical
construction to wire the outputs correctly to the breadboard
where the LEDs were located.

The ability for pedestrians to safely navigate the
intersection is an unsolved issue that may be addressed
through implementation of pushbuttons to activate a walk
signal that coordinates with the traffic light. This
improvement would greatly increase safety for pedestrians
and the project's versatility. In addition, this project requires
manually switching between day and night mode. This
could be automated through a clock or light sensor,
changing modes based on time of day or daylight.

Other improvements could require taking road
conditions, particularly speed limit, into account. A faster
speed would require a longer stopping distance and
therefore should have a longer yellow light interval.

REFERENCES

[1] Llamocca, Daniel. VHDL Coding for FPGAs,
www.secs.oakland.edu/~llamocca/VHDLforF PGAs.html

Figure 1: The breadboard/FPGA setup to demonstrate
hardware function.

Figure 2: Timing diagram showing proper operation of
the counter and FSMs.

Figure 3: Block diagram of the overall system.

https://drive.google.com/file/d/11FmNofbf00ht3VchV0u5G9mC-rZCMFlL/view?usp=sharing
https://drive.google.com/file/d/11FmNofbf00ht3VchV0u5G9mC-rZCMFlL/view?usp=sharing


Figure 4: Selection diagram of the daytime finite state
machine. Figure 5: Selection diagram of the night finite state

machine.

Table 1: State table for the Day mode

State
(Day)

East/West North/South

HR HY HG HRT HYT HGT VR VY VG VRT VYT VGT

S1 1 0 0 1 0 0 1 0 0 0 0 1

S2 1 0 0 1 0 0 1 0 0 0 1 0

S3 1 0 0 1 0 0 0 0 1 1 0 0

S4 1 0 0 1 0 0 0 1 0 1 0 0

S5 1 0 0 0 0 1 1 0 0 1 0 0

S6 1 0 0 0 1 0 1 0 0 1 0 0

S7 0 0 1 1 0 0 1 0 0 1 0 0

S8 0 1 0 1 0 0 1 0 0 1 0 0

Table 2: State table for the Night mode

State
East/West North/South

HR HY HG HRT HYT HGT VR VY VG VRT VYT VGT

S1 1 0 0 0 0 0 0 1 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0 0 0




