
Traffic Light Controller

List of Authors (Nathan Page, Joseph Nichols, Alan Akm, Stavro Alshmani)
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: page2@oakland.edu, jnichols2@oakland.edu, aakm@oakland.edu , salshmani@oakland.edu

Abstract— The purpose of this project is to make a 4 way
traffic light controller based on a Finite State Machine. The
circuit is implemented on a Nexys 4 DDR FPGA and a
breadboard to demonstrate a real application. Major findings
include the process of designing a digital circuit and
transforming a block diagram into a real circuit, as well as
modifying clock speeds on an FPGA. Conclusions include that
FSMs can largely simplify a VHDL circuit as compared to
using other components to achieve the same goal. Also, the type
of hardware used will depend on the application. Creating a
complex circuit to control the exact timing of a quick clock is
much more difficult than implementing the same timing on a
programmable microcontroller, such as Arduino. Nonetheless,
FSM-Based system design is a replicable and efficient method
of modeling a digital system which serves as a fundamental tool
in digital design.

I. INTRODUCTION
This report will explore the design and implementation

of a traffic light controller on an FPGA. Traffic lights
control the flow of traffic, and ultimately, get people where
they need to go safely and efficiently. Since traffic lights
operate in a finite number of states, such as stop and go, the
system can be modeled with a Finite State Machine. This is
one demonstration of the Finite State Machine, a powerful
design tool for modeling digital systems. The advantage of
the Finite State Machine is that it suits a traffic light well
because traffic lights repeat the same pattern. The traffic
light controller is based on a VHDL implementation of a
state diagram, which lights external lights. Overall, the
traffic light controller is an FSM-based digital system which
offers a reliable method of safe traffic flow.

II. METHODOLOGY

High-Level Concept: Before determining specific
requirements and design strategies, a high level design was
created. This included an outline of how the intersection
would operate. We decided on a 4-Way, 12 LED
Intersection. 3 LEDs for North, (Green, Yellow, Red)
another 3 LEDs for East, 3 for South, and 3 for West. From
here, we knew that the traffic lights would need a timing
element, and that they would be triggered in alternating
cycles, based on how much time has passed. In addition to
normal operation, a night mode option would be needed,
with the LEDs blinking yellow and red at intersection pairs.
[1]

Figure 1: Traffic Light Intersection

Figure 2: Top Level Block Diagram

Clock Timing: The next large task which needed to be
addressed was replicating realistic times. The FPGA has a
10ns clock, meaning in order for 1 second to pass,
100-million clock periods would need to pass. In this stage,
various approaches were weighed, such as implementing a
simple software workaround with built-in commands, or by
incrementing a register. We ended up implementing a
real-time counter by using a Modulo-N (generic pulse
generator) counter which outputs a logic high after counting
to N clock cycles of 10 nanoseconds each. This route was
chosen due to simplicity and available documentation on

this approach. When implementing this clock, the code for
my_genpulse was taken from [2].

The pulse generated after N clock cycles will be used to
signal that the state should be changed.

Finite State Machine: After obtaining a reliable clock
and having an outline for the inputs, outputs, and operation
of the system, a more specific approach was needed. This is
where the FSM came into play. With the LEDs as FSM
outputs, and the counter outputs as inputs to the FSM, the
Algorithmic State Machine (ASM) chart was derived. The
ASM chart depicts how the output changes as different
states are entered, as well as how the inputs affect those
states.

Figure 3: ASM Chart

This FSM works by using three different counters. ZC1 is a
3 second counter, ZC2 is a 1 second counter, and ZC3 is a
0.25 second counter. Starting from the beginning, first the
night mode switch is checked for its value, if it is zero then
the process continues to daytime mode. When in state S1a,
the FSM waits for the 3 second counter to emit a 1 in order
to move on to state S2a. A 3 second counter is used there
because lights 2 & 4 are green and we must wait 3 seconds

for them to turn yellow. In state S2a, lights 2 & 4 now have
changed to yellow, and to proceed to state S3a, the 1 second
counter must emit a 1. The reason a 1 second counter is used
there is because the yellow light is shorter than the green
light so its duration has been set to 1 second. Once in state
S3a, lights 2 & 4 now switch to red, and lights 1 & 3 will
switch to green. If one follows the FSM diagram further,
one will observe a very similar process will occur for lights
1 & 3 as compared to the previous process for lights 2 & 4.

For night mode, only one 0.25 second counter is
used. Lights 1 & 3 will flash red while lights 2 & 4 will
flash yellow. These pairs of lights are perpendicular to each
other. Using a 0.25 second counter, the lights will flash
twice per second.

Behavioral Simulation:

Figure 4: Behavioral Simulation

The test bench runs a loop that switches the circuit between
night mode and day mode every 2 us. The clock values were
made smaller when running the behavioral simulation so
that everything would fit in a small time frame.

III. EXPERIMENTAL SETUP
One thing that helped us know if we were on the right

track was comparing our simulation to a real-life traffic light
intersection.

Before connecting the fpga to the breadboard, we used
the on board leds to simulate the traffic light.

Figure 5: Leds on FPGA

The Nexys 4 DDR board was used with a breadboard
that was populated with twelve LED’s, three 100 ohm
resistors in parallel, and jumper wires. All code was done on
Vivado in VHDL. One switch on the Nexys board was used
to switch between modes.

Throughout various points in the design stage, the goal
was to accomplish one task at a time, instead of many tasks
all at once. For instance, before wiring external LEDs, and
introducing room for error in properly interfacing the digital
circuit with the external circuit, the onboard LEDs were
used. In this way, we verified that the clock timing was
correct, and that the LEDs would light as expected. From
here, it was now a matter of driving LEDs through the
FPGA’s PMOD ports, rather than the onboard LEDs. With
this approach, any errors would be guaranteed to be due to
further alterations, which allows for quick troubleshooting.

In our second design setup, we temporarily used white
LED’s to figure out how to wire everything up. It was
decided there would be a unique ground for each LED that
would be connected to the board outputs, and the power
traces would be wired to resistors. (Active low setup with
VCC always present). At first we did not know what
resistors were needed, so we took three 1k resistors inΩ
parallel, as shown below in Figure 1, to see if it was good
enough. Although it worked, we wanted something a little
more precise.

Figure 6: Initial Design Set Up

The reason for using three 100 ohm resistors in parallel
is to amount to an equivalent resistance of 33 ohms. We did
not have a 30-40 ohm resistor, so we emulated it by taking
what we had and making it 33 ohms. The reason for 33
ohms for the entire circuit is because it was decided we
wanted 10 mA per LED to generate an adequate brightness.
The forward voltage drop of the LED is 2V at a current of
10mA, and the FPGA has an output of 3.3V. With 4 LEDs
on at any given instant, the current draw totals to 40mA.
Therefore, we can find the resistance by rearranging Ohm’s
Law as follows:

.𝑅 = Δ𝑉/𝑖 = (3. 3 − 2)/0. 04 = 32. 5Ω
Rounding this to the nearest value and using 100Ω

resistors due to availability, we obtain the following
equivalent resistance:

𝑅𝑒𝑞 = [(1/100) + (1/100) + (1/100)]−1 = 33 Ω

Figure 7: Night Mode Final Design Set Up

We finalized our circuit by adding the red, yellow, and
green LED’s. Using a switch on the Nexys board, we can
switch between night and day mode.

Figure 8: Day Mode Final Design Set Up

IV. RESULTS

The result of the traffic light turned out as expected. Day
mode and the transition to night mode was a success. When
the switch is off, day mode is enabled and acts as a normal
traffic light intersection during the day. When the switch is
flipped on, nighttime mode is enabled and North and South
LEDs continuously blink red, and East and West LEDs
continuously blink yellow.

CONCLUSIONS

One major takeaway from this project is the usefulness of
FSMs and ASMs in describing and implementing digital

systems. In the context of VHDL coding, any digital circuit

which has a finite number of states can be composed into a
Finite State Machine, which interacts with and controls the
datapath circuit operations as needed. This is necessary in
larger digital systems where much is occurring at once. It is
also very true for all Engineering, that breaking a large

system into manageable constituent parts allows each one to
be handled more clearly and properly. Lastly, VHDL’s
powerful conversion of Processes allows an ASM to be

transformed into a functioning digital circuit. With all of this
put together, the ability to effectively model and implement
a digital system is greatly enhanced. Another takeaway is
the importance of the ability to work and communicate as a
team. Working as a team allowed the workload to be split
among different members, which increased the speed at

which the project could be accomplished. With some group
members focusing more on specific tasks, while having a
good understanding of the rest of the system, we were able
to effectively specialize in areas of design, and ensure that
our designs would be cohesive when they came together.
Working as a team and communicating progress, plans, and
ideas allowed for the final version of the project to be the
best it could be. Lastly, an improvement that could be made
would be to implement the project with a programmable
microcontroller, rather than an FPGA. This would provide
much greater simplicity and flexibility in the circuit. Of
course, this simple traffic light does not have much digital
circuit “heavy-lifting”. It is merely a counter, and so in our
specific context, the design cycle could have been massively
accelerated by using an altogether different board. Still, it
provided a valuable experience and reference if and when
the time comes where digital complexity is increased, and a

microcontroller can not properly control the system.

REFERENCES

[1] https://www.researchgate.net/figure/Typical-traffic-light-syste
m-at-a-four-way-intersection_fig4_325530865

[2] https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.ht
ml

https://www.researchgate.net/figure/Typical-traffic-light-system-at-a-four-way-intersection_fig4_325530865
https://www.researchgate.net/figure/Typical-traffic-light-system-at-a-four-way-intersection_fig4_325530865

