
+5 Digit Combinational Safe

(Karama Alkeilani, Houda Almoosawi, Kyle Budzynowski, Derek Smith)   

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

e-mails: kalkeilani@oakland.edu, almoosawi@oakland.edu, kylebudzynowski@oakland.edu, smith41@oakland.edu  

 
Abstract–This project will delve into the process of designing a 5 

Digit Combination Safe through the Nexys A7-100T board using 

the Vivado Software.  The project aimed to create a functional 

and streamlined process for the digital lock through the use of 

several key components, including: User input, circuit output, 

memory, validation, and FSM. through these key components, 

the user’s choices will appropriately reflect whether the safe is 

unlocked - or not. Major findings from this project include the 

successful integration of several components within the circuit, 

such as a parallel shift register, a 5-bit RAM emulator, and a 

counter, in order to enhance the circuit’s versatility as a digital 

safe. Another finding was the key role the FSM played in 

managing the lock’s functionality as it served to both validate 

and input a new code into the circuit’s program. Some 

challenges that were met during the project were VHDL based, 

as well as debugging errors. Conclusions drawn from the project 

include the underscoring of the complexity of FSM design,which 

prompted the use of a more well defined state diagram.  As well 

as this was the success of the circuit performing all of its project 

requirements defined in the project guidelines. Some future 

recommendations will be to address security concerns for the 

digital safe in real-world use, such as implementing additional 

safety measures for the safe. 

I. INTRODUCTION 

The report details the creation of a 5-digit combination 
lock, capable of being programmed with distinctive number 
sequences and configured to transmit an unlock signal solely 
upon inputting the correct code through the interface. 

Crafting a control mechanism of this nature serves as an 
educational tool, enriching comprehension of Datapath 
circuitry's interplay with state machines to forge a digital 
system. The foundational framework for such a circuit boasts 
a wide application spectrum and can be integrated relatively 
effortlessly. Notably, this lock circuit finds utility across 
multiple production domains, finding usage in automobiles, 
home safes, and various other applications. 

II. METHODOLOGY. 

A. Initial Design 

The first step in completing the design phase of the 
combination lock was to define what the final output needed 
to be and the path that was required to get to this point. Taking 
into consideration that the circuit at minimum would require 
a sequential 5 digit input and have the ability to compare that 
input to a stored value. Upon the comparison of that signal 
define whether it was correct or incorrect then, visually 
represent the information to the user. The circuit was then 
broken down into 5 main sections, those sections were Input, 

Output, Memory, Validation, and FSM. In the following 
sections the development of these sections will be explained. 

Within this circuit, several parametric components were 
employed, strategically designed with generic mapping to 
facilitate circuit construction [1]. These crucial components 
include the shift register, the registers integral to constructing 
the RAM emulator, and the counter. These parametric 
elements were deliberately selected for their versatile 
mapping, contributing significantly to the circuit's overall 
construction and functionality. 

B. Memory 

Starting from the core and focusing on storing the 
combination formed the initial phase of the process. This step 
was relatively straightforward, leveraging the construction of 
a RAM emulator based on the knowledge acquired from Lab 
5. Opting to modify and utilize this RAM emulator initiated 
the creation of a block diagram. Key components necessary 
for the RAM included a Decoder, individual registers 
allocated for each memory location, and a multiplexer. 

The Decoder's primary function involved acting as an 
enable selector for the individual registers. With a sole output 
of a 5-bit signal, this output was distributed to each of the 5 
register locations, serving as an enable signal for each 
specific register. Additionally, the Decoder featured 2 inputs: 
an enable signal that triggered the internal circuit operations 
when receiving a '1', and an address—a 3-bit input used to 
select among the 5 distinct internal signals. 

  
Moving on to the registers, these components possessed a 

single output and three inputs, one of which was a clock 
signal. The other two inputs comprised data in (a 4-bit 
hexadecimal digit) and an enable signal akin to the one used 
in the decoder. Each of the 5 registers was designated to store 
a single digit of the combination. 

mailto:kalkeilani@oakland.edu
mailto:almoosawi@oakland.edu
mailto:kylebudzynowski@oakland.edu
mailto:smith41@oakland.edu


 
The multiplexer played a crucial role by receiving outputs 

from the registers and outputting the accurate register 
location data based on the identical address input as that of 
the decoder. 

  
As the entire circuit progressed in development, a pivotal 

decision was made to integrate a second RAM emulator into 
the project. This addition became imperative for storing both 
the preset combination and the attempted combinations 
separately, enabling distinct storage locations for each within 
the system.  

C. Validation 

Designing a system to verify the entered combination 

against the stored one posed the most intricate challenge in 

the entire process. Researching potential methods led to the 

discovery of an online lecture elucidating the functionalities 

of a 4-bit comparator [2]. This finding became pivotal as the 

comparator proved to be an optimal solution, efficiently 

handling two 4-bit inputs and decisively determining whether 

the first input was greater than, less than, or equal to the 

second. 

  
     Embedded within the validation circuit lay a specialized 

left shift register, meticulously tailored for this specific 

purpose. This intricate register played a vital role by 

accumulating all instances of "equal to" signals, regardless of 

their Boolean representation—whether '1' for true or '0' for 

false. It thoroughly orchestrated the compilation of these 

signals into a cohesive single 5-bit output, affirming the 

legitimacy and accuracy of the entered combination. This 

process operated in a continuous loop, cyclically integrating 

the "equal to" signal from the comparator during each clock 

cycle, ensuring a thorough and comprehensive validation 

mechanism. 

  
In order to signal the completion of the left shift register's 

output, and thereby ascertain the validity of the combination, 
a Modulo 5 counter was integrated into the circuit. Initially, 
the assumption was that 5 shifted-in bits would denote the 
conclusion of the computation process. However, through 
rigorous behavioral testing, it was unveiled that an additional 
shift-in cycle was imperative to achieve a fully valid output 
therefore a Modulo 6 counter was implemented. 

 

D. FSM 

Following the examination of the partially completed 
block diagram, the immediate next step involved crafting a 
Finite State Machine (FSM). Building an FSM necessitated a 
meticulous state map to define the pertinent inputs and 
outputs of this machine. This process allowed for a 
comprehensive understanding of the required inputs to 
control the circuit effectively. 

The approach commenced by reverse-engineering from 
an output perspective. The FSM's role was to govern the 
sequential access of the circuit to various address locations, 
necessitating a means to signal the state machine when the 
user completed transitioning the switches for each digit. 
Specifically, 5 switches, labeled EA through EF (SW{14} to 
SW{10}), were designated for this task. 

During the setup code input, these switches needed to be 
sequentially toggled from '0' to '1', enabling the FSM to 
progress through individual memory locations. Conversely, 
when testing a combination, the switches had to transition 



consecutively from '1' to '0', signaling the FSM to cycle to the 
subsequent state. 

Several outputs correlated with these operations: Input 
Enable (IE), Setup Enable (SE), and Address (add). SE 
activated the decoder for the setup memory location, while IE 
performed the same for the input memory block. Both enable 
signals operated exclusively—one activated while the other 
remained inactive. The add signal governed both memory 
decoders and multiplexers, dictating the data input and output 
locations. 

Another pivotal input was a signal indicating whether the 
circuit was storing a new combination in the setup memory 
or validating a combination to unlock the safe. This signal, 
denoted as "w," was linked to SW{15}, where '1' indicated 
writing to the setup memory block and '0' directed the data to 
the input memory block. 

Additional inputs crucial for the FSM included signals 
denoting a completed count and the full shift register. The ZC 
signal from the counter marked '1' when reaching its 
predetermined value, prompting the FSM to check the 
incoming value from the shift register. If the value equaled 
"11111," the combination was deemed correct; any other 
input indicated an invalid combination. 

The FSM's remaining inputs were the clock and resetn 
signals. The clock regulated timing for the FSM to process 
synchronous information, while the asynchronous resetn 
signal reverted the state machine back to its initial state. 

Outputs associated with this segment of the FSM 
encompassed the enable signal for the shift register and the 
counter (EG) and a 7-segment decoder (z). EG, set to '1' upon 
storing the last digit of the input memory, triggered the 
counter and initiated the register's compilation of output from 
the comparator. Upon completion, a 2-bit signal relayed 
either an 'E' for incorrect or a 'U' for correct to the decoder for 
display. 

The FSM also featured distinct synchronous clear signals 
for the two memory locations, the shift register, and the 
counter, enabling individual components to be cleared 
independently. 

Finally, the FSM culminated in a 3-bit (L1) signal altering 
the state of an RGB LED on the board. This redundancy was 
implemented to provide an alternative visual representation 
of the input, aiding in error debugging and serving as a 
backup in case of display failure. 

  

E. Inputs/Outputs 

Upon finalizing the remaining segments of the Block 
diagram, the comprehensive set of inputs and outputs for the 
entire circuit became readily apparent. The inputs 
encompassed the Data In (DI), constituting the 4-bit 

hexadecimal input, alongside essential signals such as the 
clock and resetn for various component functionalities. An 
external enable signal, linked to "w," and the EA to EF 
signals were also vital inputs utilized by the FSM. 

As for outputs, they included the 7-bit string generated by 
the 7-segment decoder and the L1 signal, serving as an 
indicator on the board's LED. Additionally, an extra output 
was integrated to illuminate 5 of the red LEDs on the board, 
enhancing the visual representation of the memory location 
currently being written to. These outputs collectively 
contributed to a comprehensive view of the circuit's inputs 
and outputs, ensuring functionality and aiding in 
visualization. 

  

III. EXPERIMENTAL SETUP 

 
For this project, the Nexys A7 – 100T FPGA Board 

served as the primary hardware for implementing the 5-digit 
combination safe, but before we could use the VHDL design 
on the board we needed to use extensive simulations by 
implementing a VHDL testbench in Vivado. This testbench 
was critical to verifying the functionality of each component 
of the design and this testbench gave us the ability to look 
deep into the circuit and confirm all signals were being 
executed as they were intended. This testing primarily 
focused on the behavior of the finite state machine (FSM) to 
verify that all states were being passed through at the correct 
times and giving the correct outputs.  

The VHDL testbench was set up in a simulation 
environment in Vivado and was designed to simulate the 
inputs that were to be provided by the user when testing the 
circuit on the FPGA board. More specifically, testing the 
functionality of the data inputs (DI), the enter switches that 
simulated each DI being entered into the circuit, and the 
combination mode and unlocking mode select switch (wr_rd) 
which would switch between which mode you wanted to 
enter data in. This switch was also a critical enable switch as 
it also performed the task of enabling different decoders and 
displays based on what mode you were in. This simulation 
allowed us to control what inputs were being toggled on and 
off to get the exact output we desired. 

The most critical aspect of the project was the 
functionality of the FSM as it was designed to be the control 
center of the entire circuit and it was crucial to make sure all 



inputs and outputs were being controlled and manipulated 
correctly. By simulating the different states, we could 
meticulously observe and verify each transition of state based 
on the inputs provided and verify all outputs were correct to 
maintain the functionality of the rest of the components. 

 

IV. RESULTS 

 
The results obtained from the VHDL testbench 

simulation for the 5-Digit combination safe were 
comprehensive and allowed us to view all our components 
theoretical outputs in a real scenario. Through the use of a 
testbench simulation to manipulate inputs to get an excepted 
result, we were able to visualize the sequential logic and 
behavior of our system under various test conditions. One of 
those scenarios is displayed below, showing the inputting of 
a combination and then attempting to unlock the safe with the 
same combination which allowed us to visualize the entire 
system move through all the required states and come to the 
correct output which in this case was an unlocking of the safe 
triggering the seven segment display to display the letter U 
while in that state. There were some minor discrepancies that 
were found in the simulations but were quickly corrected with 
there being little to no errors due to the architecture of the 
components. The results were highly consistent with the 
theoretical outputs we had expected due to all the knowledge 
gained during lecture and labs, we were able to successfully 
implement components such as an FSM or shift register and 
were able to get the expected outputs due to our 
understanding of the digital system design and VHDL coding 
principles. In conclusion, the results as shown below in the 
testbench and in the implementation of the physical hardware 
provided clear outcomes for each component and state that 
was being used in the system and the planning and design 
done before testing allowed for a smooth and simple process 
of testing all state transitions and outputs. 

 

 

CONCLUSIONS 

 
The task of creating a 5-digit digital lock prompted the 

team to work mostly with the logic and VHDL of creating a 
working FSM and melding all components into a working 
model via creating a TOP block diagram. The FSM posed the 
most work in the entirety of the project. Creating a logical 
and working state diagram was the focal point of the project. 
An issue that could be worked on is the rather convoluted 
state diagram created for the FSM logic. Producing a clearer, 
or rather, a more simple FSM design could be a task that 
would be worth pursuing to further optimize the lock. Other 
issues the group ran into were the errors in the VHDL. 
Simulating the lock, finding the bugs and errors, and then 
fixing the VHDL and rerouting the signals took up time and 
was rather tedious. All in all, creating FSM logic and merging 
all components is the most important part of creating a digital 
project. Despite the working design, there are still many 
improvements that could be made in regards to the lock. 
Security issues regarding the ease of creating a new 5-digit 
code for the lock could be tackled by added extra logic which 
would require an additional safety measure to change to code-
-whether it be a sensor to sense a key, or a factory code, or 
whatnot. Another improvement could be made by adding an 
additional seven segment display to show the incoming 
numbers as the user inputs digits to the lock. Other additions 
to the lock could be adding a fingerprint sensor to the lock. 
Many improvements and additions could be done for lock, 
for further optimization and efficiency. Optimizing the FSM 
and overall TOP logic design and adding additional features 
to the digital lock could further improve the design. 

REFERENCES 

 
[1] Llamocca, Daniel. “RECRLab.” VHDL Coding for Fpgas, 2015, 

www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.   
[2] Haskell, Richard E., and Darrin M. Hanna. “Lesson 36 - VHDL 

Example 20: 4-Bit Comparator - Procedures.” YouTube, YouTube, 25 
Oct. 2012, www.youtube.com/watch?v=3epKbSGbMCA&amp;t=3s

 


