
Simple Eight-bit Signed Calculator

NuJude Mady, Jayanti Rakshit, Sam Walker

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

nujudemady@oakland.edu, jayantirakshit@oakland.edu, swalker4@oakland.edu

Abstract—This project serves as a simple eight-bit signed

calculator with four operations: addition, subtraction,

multiplication, and division. The calculator takes its two inputs

as two-digit hexadecimal numbers input via a Personal

System/2 (PS/2) keyboard, as well as a switch input from the

the Nexys A7-100T board, and outputs a signed four-digit

hexadecimal answer on the four rightmost seven segment

displays of the board. This was done using various digital logic

components coded using Very High-Speed Integrated Circuit

(VHSIC) Hardware Description Language (VHDL) in Vivado.

Upon completion, an accurate and user-friendly signed

hexadecimal calculator was created.

I. INTRODUCTION

This simple eight-bit calculator takes two two-digit

signed numbers as hexadecimal inputs (A and B) from an

external PS/2 keyboard. From this keyboard, a decoder,

Finite State Machine (FSM), and series of four registers are

used to feed user input into the various operations of the

calculator. These basic arithmetic operations, including

addition, subtraction, multiplication, and division, are

determined via four switches on the Nexys board, linked to

a four-to-one multiplexer to properly output an answer. The

output from the multiplexer is then displayed on the Nexys

board’s four rightmost seven-segment displays using a

seven segment serializer. Figure 1 shows the block diagram

of this schematic.

Figure 1: Simple Signed Eight-Bit Calculator Block

Diagram

Calculators are vital instruments used for solving

algebraic problems that would otherwise take much longer

to solve by hand. Topics from class used in this project

include basic logic gates, combinational and sequential

circuits, FSMs, as well as number systems and computer

arithmetic to confirm the calculator is giving appropriate

results.

II. METHODOLOGY

A. PS/2 Keyboard Input

In designing this calculator, it was decided to use a
keyboard as the user interface to obtain the A and B values to
perform calculations with. To do this, it was necessary to
decode the data obtained from the keyboard/Nexys board
interface. The PS/2 keyboard outputs a DOUT signal, as well
as a done signal. The DOUT signal is a ten-bit output, with
the two most significant bits (MSBs) being the stop bit and
the parity bit, which can be ignored for the purpose of this
project. The rest of the signal, DOUT (7 downto 0), is the
data itself, corresponding to the scan code of each key on the
keyboard, as shown in Figure 2. A keyboard decoder was
used to turn this eight-bit scan code hexadecimal signal into
a four-bit signal, corresponding to the binary representations
of a hexadecimal value between 0-F. Further, as each DOUT
signal is output, the done signal is maintained for one clock
cycle. This done signal goes into an FSM where it acts as the
deciding state for whether the next state can be implemented.

Figure 2: PS/2 Keyboard Scan Codes [1]

As shown in Figure 1, the keyboard FSM is connected to

the PS/2 keyboard data input, as well as four registers. The
FSM is also taking in ‘clock’ and ‘resetn’ inputs, as all

mailto:nujudemady@oakland.edu
mailto:jayantirakshit@oakland.edu
mailto:swalker4@oakland.edu

synchronous circuits do, meaning everything only happens
on the clock tick. These four registers each take in one of the
four inputs the user inputs (two inputs for the hexadecimal
value of A, two inputs for the hexadecimal value of B). The
keyboard FSM was designed to act as an enable for each of
the registers, and as the ‘s’ value for the synchronous signed
divider, which will be later explained. As shown in Figure 3,
the FSM uses the done signal of the PS/2 keyboard as the
deciding factor for moving between states. To move from
one of the five states to the next, the done signal must be
sent, else the machine stays in its current state. In addition,
after the first state, when the done signal is ‘1’, the enable for
the first register is also ‘1’, allowing the first decoded scan
code value of the input A to be captured. The same thing
happens with each of the registers. Once state three is over,
identified as done being ‘1’ and the fourth register being
enabled, the machine moves on to the final state, state four,
where the ‘s’ value of the divider is output, before moving
back to state zero to start over.

At the end of each FSM cycle, the registers are all full of
the data corresponding to the values of A and B. Then, as the
definition of registers predicts, they all release their values at
the next clock cycle, where values of A and B are separately
concatenated and are now ready to use in calculations.

Figure 3: Keyboard FSM

B. Signed Addition and Subtraction

As previously stated, in the specifications of the
calculator, the inputs are taken as signed hexadecimal
numbers. This makes addition and subtraction relatively
simple. For addition, the binary versions of A and B are sign
extended, to account for overflow, and then simply added
together, using the adder concept learned previously [2] with
a carry-in value of ‘0’.

For subtraction, it is known that subtracting a negative is
the same as adding a positive, and that subtracting a positive
is the same as adding a negative. To simplify this operation,
this logic was used, applying two’s complement (2C) to B,
and then adding this value to A. If B is originally negative,
subtracting it from A is the same as adding the absolute
value of B to A, so applying 2C turns the originally negative
B positive so its value can be added to A. Similarly, if B is
originally positive, applying 2C turns it negative, and by
adding this negative version to A, it acts the same as if we
subtracted the positive B from A. To implement this, A and
B are, once again, sign extended, but B is also inverted.
Then, these new values are input to an adder with a carry-in
of ‘1’, to act as the second step of applying 2C to B.

The result of these two operations will end up as the
mathematically accurate, signed answers one would expect.
The answers are also sign extended to be 16 bits, to match
the answers given from multiplication, as seen next.

C. Multiplication

When multiplying two numbers, the sign of the output
depends on the input. When both inputs are positive, the
output is also positive. When one of the inputs is positive but
the other is negative, the output is negative. Finally, when
both inputs are negative, the output is positive, as the
negatives cancel each other out. The magnitude of the values
in each of these cases is the same, however. Using this logic,
it can be understood that multiplying the positive values of A
and B will give the correct magnitude of the answer, and 2C
can be applied where appropriate to give the correct signed
answer of the multiplication of A and B.

To carry this out, a 2C decider was implemented, to
determine if A or B were negative and needed to have their
absolute values taken. This was done by creating a
component where the MSB of A and B were observed. If the
MSB was a ‘0’, the new value of the input was simply the
sign extended version of that number. If it was determined
that the MSB was a ‘1’, the number was also sign extended,
but then underwent 2C to give the positive value of this
number.

After this, A and B are now both the nine-bit positive
representations of the values input by the user. A 9x9 bit
multiplication is carried out, using techniques implemented
in the laboratory section of this course [2]. The output of this
cross is still positive, even in cases where the sign of the
numbers input by the user do not match. To solve this, A and
B’s original MSBs are observed and if appropriate, 2C is,
again, applied to the answer, giving the user the correct, 16-
bit, signed answer.

D. Divison

As with multiplication, division follows the same rules of
the output being negative when the input signs do not match.
However, when implementing the dividing component of the
calculator, it was decided to simplify things even further and
take the absolute value of both A and B regardless of if it
was necessary. Then, as implemented in the laboratory
section of this course, a division operation was implemented
[2]. After the division of the absolute value of A and B was
executed, the sign of the answer had to be decided. To carry
this out, the simple sign extended version of the answer was
found, as well as the 2C version of the answer. To select
which was correct, the MSBs of the original inputs of A and
B were concatenated and acted as a select for the multiplexer
that decided which answer would be taken. If the MSB
concatenation/select was 00 or 11, the simple signed
extended version was output. If the select was 01 or 10, this
means that one of the inputs was negative, meaning the
answer should also be negative, meaning the multiplexer
would output the sign extended, 2C version of the answer.

In addition, when using the divider design given in the
laboratory section of this course, the inputs were, of course,
A and B, but there was also an input ‘s’ necessary for the
divider’s FSM, which was manually turned on/off by the
user using a button. This is impractical to have the user do in
a four-operation calculator, so this ‘s’ value was taken care
of by the FSM in the keyboard design, as shown in Figure 3.
After all values of A and B are input into the registers, ‘s’ is
assigned a value of ‘1’ so the divider can operate correctly
with the inputs it has. Also, as shown in the laboratory
section, the divider uses a series of registers and synchronous
circuits, which can only operate corresponding to the clock
cycle given. This means that the answer of the divider is only
accurate when the done signal is high.

E. Answer Output

After determining the values of all four operations using
the inputs determined by the user, it is necessary to consider
which switch the user flipped up, indicating which operation
was intended to be executed. SW0 acts as addition, SW1 acts
as subtraction, SW2 acts as multiplication, and SW3 acts as
division. The calculator was designed to automatically show
the output as soon as the second hexadecimal digit of B was
input, so there was no need for an “equal” switch. The
switches went into a priority encoder, where their values
were transformed into a two-bit output. This two-bit output
acts as the select for a four-to-one multiplexer. The inputs of
the multiplexer consist of the four results of each of the four
operations using A and B. The positions of each operation
result into the multiplexer match the priority encoder
designed to appropriately choose the value displayed to the
user depending on their desired calculation.

The resulting 16-bit output of the multiplexer is then split
into four four-bit signals to be input to a seven-segment
serializer provided [2]. Within the seven-segment serializer
is a decoder to transform the binary value of each four-bit
signal to its hexadecimal equivalent. The serializer works to
enable the four right most seven-segment displays of the

Nexys board, and, finally, show the signed, hexadecimal
version of the result of the proper operation.

III. EXPERIMENTAL SETUP

This calculator was set up using a PS/2 keyboard,
connected to a Nexys A7-100T board, connected to the USB
port of a computer running the Vivado software. In this
software, all previously mentioned components were coded
in VHDL, using brand new code, as well as previous code
from laboratory assignments/the course page.

The inputs were obtained via the keyboard, as well as
SW0-SW3, and outputs were displayed on the board’s four
rightmost seven segment displays. Both the inputs and
outputs are represented in the hexadecimal number system,
which is simply compressed binary, allowing for a more
efficient way to calculate.

Prior to putting all components together, tests were
conducted on each to ensure they were working properly and
zone in on where errors were formed. For example, each
operation file was individually tested, by writing a testbench
and utilizing Vivado’s simulation tool. Only after confirming
each was working as expected were they added into the final
project. By doing this, excessive troubleshooting and error
mitigation were not needed, as the source of the problem
could easily be identified by examining each signal within
the component.

After confirming these operation blocks were working, a
separate “test” project was made to ensure they were port-
mapped together correctly. This project included all parts
besides the keyboard components and the seven-segment
serializer components, meaning one had to manually enter
the DOUT values for each test case, as well as the done
signals that would be otherwise provided by the keyboard.
The seven-segment serializer was also not included, so that it
could be confirmed that the results were coming through
each component correctly. After everything was confirmed
to be working correctly, a final project was made, including
every single source of every single component, as well as a
constraints file to allow for the board to correctly assign each
physical component to its corresponding virtual component.

The expected results are that the user will enter the two-
digit hexadecimal value of A, then flip the corresponding
switch of the operation they would like to carry out, then
input the two-digit hexadecimal value of B, and immediately
be provided with the mathematically correct, signed, four-
digit hexadecimal value on the board’s four rightmost seven-
segment displays. After each calculation is carried out, the
user is expected to reset/clear the calculator via the CPU
reset button on the board.

IV. RESULTS

As previously explained in the experimental setup,
testing was conducted in phases. By simulating the
intermediate project, without including the keyboard/board
interface, results were correct, as shown in Figures 4-7. Upon
receiving these results, it was essentially without a doubt that
the final, complete project would give the expected results.

The results obtained by this project were as they were
expected to be. Upon two signed two-digit hexadecimal

inputs, and the corresponding switch being flipped up, the
calculator does give the mathematically correct signed
hexadecimal outputs displayed on the seven-segment
displays. A video of the functioning calculator can be seen
here: https://www.youtube.com/watch?v=lcjVxKpi5EU

Digital logic design was the topic of this course, and by
designing a system that achieves this, much was learned in
the process. The implementation of synchronous circuits was
explored even further, as they were only touched on in the
last two laboratory assignments. The idea of using signed
inputs was also dived into, seeing that the laboratory
assignments pertaining to calculations were unsigned and
various steps had to be taken to convert these base operations
from unsigned to signed, as explained previously. Further,
the PS/2 keyboard/Nexys A7-100T board interface and
seven-segment serializer had to be understood before
implementing them. Previously, the switches on the board
and the occasional button on the board were used and
outputs were displayed on a single seven-segment display. In
this project, inputs were taken using a combination of the
switches on the board and an external USB keyboard, and
outputs were shown on multiple displays. Upon completion,
these concepts became much clearer.

CONCLUSIONS

At the end of this project, concepts regarding digital logic
design are exponentially more coherent. This project allowed

for all concepts learned throughout the semester to come
together nicely, from basic binary addition to applying 2C to
simple asynchronous circuits to more complex synchronous
circuits and FSMs to designing a digital system using various
components and implementing them on a Field
Programmable Gate Array (FPGA).

Troubleshooting and finding errors within the project
were also topics that were crucial to its completion. By being
able to single out errors and discrepancies within each
component, each part came together much more seamlessly
in the end. The way this was done was through writing
testbenches and performing simulations in Vivado and
ensuring each component was working as expected. When
results were unexpected, various signals from within the
components were analyzed to pinpoint the exact root of the
problem.

REFERENCES

[1] Brown, A. (2019, July 10). Nexys A7 Reference Manual. Nexys A7
Reference Manual - Digilent Reference.
https://digilent.com/reference/programmable-logic/nexys-
a7/reference-manual

[2] Llamocca, D. VHDL coding for FPGAs.
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

Figure 4: Addition Simulation Results

Figure 5: Subtraction Simulation Results

https://www.youtube.com/watch?v=lcjVxKpi5EU
https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual
https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

Figure 6: Multiplication Simulation Results

Figure 7: Division Simulation Results

