
8-bit Signed Calculator with Hexidecmial Display and Keyboard Input

EGR 2700 Final Project

Francesca Cipriano, Andrew Fergan, Austin Nieporte, Paige Seyfarth

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

fcipriano@oakland.edu, afergan@oakland.edu, austinnieporte@oakland.edu, paigeseyfarth@oakland.edu

Abstract

The goal of this project is to create an 8-bit signed calculator

that is capable of 4 operations. These operations are

addition, subtraction, division, and multiplication. To make

data input easy for users, it uses a USB keyboard, and the

results are displayed on a 7-segment screen. The answer will

then be shown on the Nexys A7 FPGA board as a 16-bit,

two’s compliment signed number in hexadecimal form. Just

like a normal calculator the inputs and outputs can be

positive or negative.

Figure 1: Top File Block Diagram

I. INTRODUCTION

The purpose of this project is to create an 8-bit signed
calculator. This calculator should perform addition,
subtraction, multiplication, and division to function like a
normal calculator. The knowledge gained in previous labs
have laid the groundwork for construing this calculator.
Topics that were most helpful were taught in lab 2, 3 and 6.
Lab 2 focused on addition, lab 3 focused on multiplication,
and lab 6 was focused on division. Another lab that helped
with the design of the calculator was lab 4 because of its
similarities to the calculator's architecture. Lab 4 was
composed of 4 circuits that were then connected through a
multiplexor (MUX) and were output to a hexadecimal to 7-
segment decoder. The calculator receives input from a USB
keyboard, consisting of five inputs, and outputs the results as
four hexadecimal numbers on a 7-segment display.

II. METHODOLOGY

As previously noted, the fundamental structure of

the calculator consists of four arithmetic circuits, each

dedicated to one of the mentioned operations, and they are

all connected via a MUX. A standard USB keyboard, as

shown in figure 2, was used for user input of desired values

and operations. Since a keyboard was used, the use of the

PS/2 Interface code, provided by Dr.Llamocca in the Unit

7 notes [1], was needed. A 40-bit register stored all the

input data as a string of scan code bits which then went

through the decoders as either a hexadecimal value or

operation (0-F, +, -, x, /). The output of the decoders were

the inputs for the calculator. To display the signed

hexadecimal result, the 7-segment display on the FPGA

was used. Displaying each hexadecimal place

simultaneously required the 7-Segment Serializer code

from Dr.Llamocca in the Unit 7 notes [1]. To control the

data processing circuit with a USB keyboard, a finite state

machine (FSM) was created. All of the circuits in this

project are found in the data processing circuit, as well as

the two left shift registers and two counters. By having all

circuits as a part of the data processing circuit, it allows all

calculations to take place through inputs on the keyboard.

Figure 2: Keyboard Inputs

A. Addition/ Subtraction

The adder and subtractor operand takes place in the

4 to 1 mux when either the addition or subtraction

operands are used. Component of the calculator was

taken directly from lab 2 with a few minor changes. This

is a 9 bit adder for sign extension to avoid oveflow. This

block diagram has a one as the input for subtraction and

zero as an input for addition. Note that figure 3 is a 4 bit

adder/subtractor while out project was modified to be a 9

bit adder/subtractor.

Figure 3: Addition and Subtraction Block Diagram

B. Multiplication

To create the multiplication function, the unsigned

multiplier from lab 3 was used. To change the multiplier

from unsigned to signed, a two’s component was added.

The component has two inputs, the 8-bit input and an

enable. If the enable is not active, known as being 0, then

the 8-bit input will be passed through to the output. If the

enable is active, known as being a 1, the component outputs

the two’s compliment of the original 8-bit input. Both 8-bit

inputs, A and B, are put through the two’s compliment

component before they enter the multiplier. In the two’s

compliment component, the most significant bit (MSB) is

what is given to the enable to decide if the input is passed

through or if the input is changed to its two’s compliment.

The output of the multiplier is also put through the two’s

compliment component. The enable on this two’s

compliment is the MSB of A xored with the MSB of B. This

corrects the sign of the output of the circuit to its intended

value. The MUX then receives the output through a 16-bit

bus. This 8-bit signed multiplier is shown in Figure 4.

Figure 4: Multiplication Block Diagram

C. Division

 To create the division function, the unsigned

divider from lab 6 was used. To change the divider from

unsigned to signed, a twos’s complement component was

added similar to the multiplier function. The most

significant bit of each input is what determines if the input

will pass through or if the input will be changed to two’s

compliment. The divider used a clock, shift register,

counter, and an FSM to control the circuit. Since the input

to the mux is 16 bits, the output of the divider function was

sign extended to 16 bits, in order to be able to pass through

the signal.

Figure 5: Division Block Diagram

D. PS/2 Interface

The PS/2 interface transfers data synchronously with the

clock. The scan code is comprised of 8 data bits and is

subsequently stored in the 40-bit register. The PS/2 interface

outputs the scan code through an output signal with a

"done" signal lasting one clock cycle. This "done" signal

plays a crucial role as an input to the Finite State Machine,

instructing the data path circuit to store the output scan code

in the 40-bit register.

Figure 6: PS/2 Interface Block Diagram

E. Mux Operation Selection

In figure 7, the encoders encode the data from the

40 but register as either hexadecimal input or an

operation. The outputs from these encoders are then

inputs to the 4 to 1 mux. The purpose of the multiplexer

is to take the multiple input signals and synthesize them

into a single output. These arithmetic operations are each

accessible through a select line. Therefore, the output of

the multiplexer is 16 bits and is determined by which

operation is being selected by the user.

Figure 7: 4 to 1 Mux Operand Block Diagram

F. 7-segement Serializer

The function of the serializer is to display the 16-bit

hexadecimal calculation on the Nexys A7 board. The

serializer’s components were a finite state machine (FSM), a

4 input multiplexor, a counter, a 2-to-4 decoder, and a

hexadecimal to 7-segment decoder. The counter controls the

FSM and generates a 2-bit output. The FSM controls the

select line of the multiplexor. The output of the FSM also

passes through the 2-to-4 decoder which basically just

activates one of the four 7-segment digits each millisecond.

This allows for the 16-bit result to be visible to users. For

displaying the calculation, the calculator’s output is

connected to either the input of the serializer or the

multiplexor. For the bus size of the of the calculator to match

the input of the multiplexor, the 16-bit bus is split into 4, 4-

bit busses. These 4 busses are connected to the multiplexor’

s input. The figure below shows the block diagram of the

serializer. The 7-segment serializer was given in the Unit 7

notes [1].

Figure 8: 7 Segment Serializer Block Diagram

G. FSM

This Finite State Machine State consists of 3 sequential

states while having signals connecting to the two counters

and two registers. In state 1, the machine waits for an input

from a key stroke on the keyboard. If an input is detected, it

is then loaded into the 8-bit register. State 2 is responsible

for detecting all 40 bits from the 5 input keys. When state 2

counts each bit, the output is 0 and returns to state 2 until all

8 bits are detected. When all 8 bits are detected the output

becomes 1 and enters the count40 signal. Count40 signal

returns output 0 and returns to state 1 after 8 bits are

detected. Once all 40 bits are accounted for, then state 2 can

finally enter state 3. When state 3 is hit, the calculation

process is complete and the middle button on the Nexy’s

board bush buttons as in figure10 is used to start a new

calculation. If the user wanted to restart a calculation, they

could simply press the reset button.

Figure 9: Finite State Machine Block Diagram

Figure 10: Nexy’s Push Buttons

H. Left Shift Register and Counter

The left shift registers and counters work in parallel with

each other and the finite state machine. These are actively

working during state 2 in the finite state machine. It is

important for each bit to be accounted for in order for the

calculator to work properly. The shifted output bit of the 8

bit register is then the input to the 40 bit register. These

values keep shifting left until all 40 bits are in the left shift

register and accounted for by the 40 bit counter. The

counters have importance by counting how many bits in the

register in order to output a 1 or 0 which then determines the

path on the finite state machine. The output 1 means the

counter is full whereas the output 0 signifies that the counter

has not reached is maximum bits.

Figure 11: 8 Bit and 40 Bit Left shift Registers

Figure 12: 8 Bit and 40 Bit Counters

III. EXPERIMENTAL SETUP

Figure 13: Behavioral Simulation

Experimental results from this lab are shown in the behavioral
simulation created from cases in a test bench. It displays all of
the results of all operations as well as the overall result based
on the operation input. The testbench was used for
troubleshooting errors in the code. One encountered was with
division and this was found when we noticed that the “cout”
signal was always on causing for incorrect calculations. This
was resolved by rewriting the code for the subtractor in
division to resolve this.

IV. RESULTS

The calculator developed in this project functions

similarly to a normal calculator, because it incorporates

various functions like addition, subtraction, multiplication,

and division. This calculator uses a USB keyboard for

inputs instead of a keypad. The keys that are used as

operations are “+, -, x, and /”. The output number will

always be in hexadecimal. This is to account for a negative

result. The results of the inputs are displayed using the

seven segment displays on the Nexys A7 board.

CONCLUSIONS

After the completion of this calculator, some conclusions
were drawn. The creation of this calculator was an excellent
method to show what topics were learned in class and how to
put them to use. One topic that was used a lot in this project
was port mapping from the different components to the top
file. To create a working calculator, there were numerous
design files, a test bench, and a constraint file. When these
files were integrated correctly, the calculator was finished.
Once the calculator was working, it was fun to test out all the
operations. When reflecting on this project, it is easy to see
why learning VHDL coding and using Vivado is important for
our future careers.

REFERENCES

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[1] D. Llamocca. (2021). ECE2700 - Unit 7: Introduction to Digital
System Design [PDF].

	I. Introduction
	II. Methodology
	A. Addition/ Subtraction
	The adder and subtractor operand takes place in the 4 to 1 mux when either the addition or subtraction operands are used. Component of the calculator was taken directly from lab 2 with a few minor changes. This is a 9 bit adder for sign extension to ...
	B. Multiplication
	C. Division
	D. PS/2 Interface
	E. Mux Operation Selection
	F. 7-segement Serializer
	G. FSM
	H. Left Shift Register and Counter

	III. Experimental Setup
	IV. Results
	Conclusions
	References

