4 WAY TRAFFIC LIGHT CONTROLLER

Angelo Esho, Jason Mikho, and Ethan Talampas

Procedure

- We designed a 4-way traffic light controller to simulate a real-life scenario of how a traffic light would work at an intersection.
- We divided the routes into two paths Path 1 (North and South) and Path 2 (East and West).
- We constructed different times for each path to turn green, yellow, or red.
- For our hardware we used an Artix-7 50T board, breadboard, and wiring utensils.
- For software we used VHDL code in Vivado.

Circuit Design

• We used 3 counters and one FSM machine for our circuit.

The FSM will represent the system with a set number of states. In our circuit and code, we will have 6 states (S0-S5). These states will control the LEDs.

INPUT and OUTPUTS of both parts

- The 3 counters will be required to count 15 seconds, 5 seconds, and 3 seconds.
- The counters contain 6 inputs (Ea, Eb, Ec, ScIra, ScIrb, and ScIrc)
- The counters contain 3 outputs (Ca, Cb, and Cc) that run into the FSM machine.
- The FSM machine has 3 inputs (X1, X2, and X3) that come in from the counters.
- The FSM contains only 2 outputs (P1 and P2) that will produce the LED lights onto our breadboard.

Patn 1	Green	Уенош
Path Z	Red	
Time Second S	15	5

Parn 2	Green	Yellow
Path I	Red	
<i>time</i> seconds	15	5

Patn 1	Red
Path Z	Red
Time Seconds	3

Timing

- Path 1 will be green for 15 seconds and then change to yellow for 5 seconds while path 2 will be red for 20 seconds.
- This will also occur, but it will be for Path 2.
- The next scenario both paths will be red for 3 seconds. This will allow the switch between the paths to occur.

Ca,	Input Ca, Co, I Cc		Present State	Nex+ state	0017017 (P1 & P2)	
1	×	×	000	001	010	100
X	١	4	001	010	011	100
⊀	*	I	010	011	100	100
۱	メ	7	o)(100	100	010
*	ſ	*	10.	1 01	100	110
×	×	1	101	000	100	100

Input Ca, Co, l Cc		Present State	Next State	0017017 (P1 & P2)		
ı	×	*	SÓ	SI	010	100
メ	٦	4	SI	52	110	100
★	*	I	SZ	53	100	100
1	メ	7	53	54	100	010
*	l	×	54	S5	100	110
X	×	1	55	So	100	100

Excitation and State Tables

- Three inputs are used to control which states will be active. These inputs are (Ca, Cb, and Cc).
 However only one input is needed at one time.
- The inputs 1 will control if the states move on.
- When the input Ca, Cb, or Cc is 1 it will make the state change .

Number meanings:

010 = green, 110 = yellow, 100 = red

States

S0 = 000, S1 = 001, S2 = 010, S3 = 011, S4 = 011,

S5 = 101

State Explanations

S0

 When X1 = 0 it will remain in S0, When X1 = 1 the state changes to S1 and the counter will run for 15 seconds.

S1

• When X2 = 0 it stays in S1, X2 = 1 it will change to S2 and the counter will run for 5 seconds.

S2

 When X3= 0 it stays in S2, X2 = 1 it will change to S3 and the counter will run for 3 seconds.

S3

 When X1 = 0 it will remain in S3, When X1 = 1 the state changes to S4 and the counter will run for 15 seconds.

S4

• When X2 = 0 it stays in S4, X2 = 1 it will change to S5 and the counter will run for 5 seconds.

S5

• When X3 = 0 it will remain in S5, X3 = 1 it will change back to S0 restarting the cycle.

Simulation

SIMULATION - Behavioral Simulation - Functional - sim_1 - tbtop

? ×

Breadboard Design Structure

Traffic System on Breadboard

References

1) Llamoca. "Generic Pulse Generator." VHDL Coding For FPGAS, http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html