
Four-Way Traffic Light Controller

Angelo Esho, Jason Mikho, Ethan Talampas

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: angeloesho@oakland.edu, jasonmikho@oakland.edu, etalampas@oakland.edu

Abstract— In this project, we will use the Nexys A7-50T board

to design and simulate a four-way traffic controller. There will

be a path going North and South (P1) and another path going

East and West (P2). We will use VHDL to code the timing of

when the lights should change color. We will also use a state

table, along with an FSM to display all the possible scenarios

that could be outputted. This project will help us better

understand how the traffic lights work.

I. INTRODUCTION

We have chosen a four-way traffic light controller for this
project. On the roads, traffic lights are used to regulate the
flow of cars, limiting traffic congestion. A standard traffic
light has three colors that tells drivers whether to stop for red,
slow down for yellow, or go for green. When the light changes
color, each change lasts for a specific amount of time. This
time will be modeled by the counters in this project. Our goal
for this project is to use VHDL code that will be uploaded to
a Nexys A7-50T board to control LEDs that will be on a
breadboard.

Figure 1: Four-Way Traffic Light Controller Process.

II. METHODOLOGY

We will be using VHDL coding language to

program our Nexys A7-50T board. We will use a

breadboard, LED lights, resistors, counter registers, and

power ports to simulate how a traffic light will perform. In

Table 1, we grouped two paths going together (North and

South, and East and West), this allows us to determine

which LEDs should be turned on at specific times.

Table 1: Output Table with Signal Description.

In Table 2, we used three counters to demonstrate the time it

would take for each light to change colors. We decided to

use 3 different counters being 15, 5, and 3 seconds.

Table 2: Component Inputs and Outputs.

To visualize the inputs, present states, next states, and

outputs for this controller, we had to construct a state table.

In the table, all possible states are represented, along with

the next state which depends on the input. The table also

demonstrates the output, which is what color the traffic light

would be in both paths. These findings are represented in

Table 3 and 4.

mailto:jasonmikho@oakland.edu

Table 3: Excitation Table.

Table 4: State Table.

 In the excitation and state tables, state 0 = 000,

state 1 = 001, state 2 = 010, state 3 = 011, state 4 = 100, and

S5 = 101 the LEDs are presented with green = 010, yellow

= 110, and red = 100.

Table 5: State One Timing of Traffic Light.

Table 6: State Two Timing of Traffic Light.

Table 7: State Three Timing of Traffic Light.

In Table 5, we have Path 1 (North and South) that will be

green for 15 seconds then it will change to yellow for 5

seconds, while Path 2 (East and West) will be red for 20

seconds. Following this, the state changes and Path 1 will be

red for 20 seconds while path 2 will be green for 15 seconds

and yellow for 5 seconds, this is shown in Table 6. In

between these state changes, both paths will remain red for

three seconds, this is shown in Table 7.

Figure 2: Circuit.

Figure 2 shows the circuit of our design. Input X of the

FSM has a value of time for which the desired light will stay
lit up. These outputs will also be connected to one counter out
of the three. This will correspond to the specific LED on the
breadboard. Path 1 is the first group that will be green for 15
seconds for State 0. State 1 changes the light from green to
yellow and will stay yellow for 5 seconds. State 2 has both
paths at red for 3 seconds. The pattern then flips for state 3, 4,
and 5, but now for Path 2. The process from the state changes
will work automatically.

III. EXPERIMENTAL SETUP

Finite State Machine

 Through Vivado, we were able to implement a finite

state machine that switched through all the possible states at

the correct time. In the code, we had transitions and outputs

for the finite state machine. In Figure 3, the transition

component of the finite state machine is shown on Vivado.

Figure 3: Transitions of FSM.

The finite state machine starts with state 0 and depends on

X1. If X1 is 1, then the state moves to state 1. The states

depend on the X values until the fifth state where if X3 is 1,

then it goes back to state 0. The outputs portion of the finite

state machine is shown in Figure 4.

Figure 4: Outputs of FSM.

The outputs of the finite state machine determine which

color and path of LEDs should be on. They also determine

the enables and synchronous clears for each counter, so that

the correct LED turns on for the correct path at the correct

time.

Results
The results gave us exactly what we were looking for.

Everything worked correctly. The LEDs, the wiring, and the
code all ran correctly which allowed us to create a properly
functioning traffic light controller. A link to the results shows
a simulation of how it should run.

https://drive.google.com/file/d/1Je0m3rJZmP8-

ihVjJtNSMbNc3if9Gmjd/view?usp=share_link

CONCLUSIONS

In conclusion this project allowed us to learn much more
about VHDL code and how it works in the real world. There
were a lot of obstacles within the VHDL code. The main
obstacle that happened near the end was fixing the counter and
the FSM to work accordingly. The counter issue was changing
the 15 second count from nanoseconds to seconds. When
programming the board all the LEDs were on, this is because
the code is running so fast it, we couldn’t see any change. The
FSM was not looping back to the first state and continuing the
cycle. We fixed this by adding another state that allowed the
FSM to loop back to the first state. Eventually our code
worked out and everything came together. Not only did we
learn more about VHDL code, but we learned more about the
Artix-7 Nexys A7-50T board and how to implement it to
structure and control a circuit on the breadboard. In this
project we deepen our knowledge on the board and the code
to program it.

REFERENCES

[1] Llamoca. ”Generic Pulse Generator.” VHDL Coding For FPGAS,
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

https://drive.google.com/file/d/1Je0m3rJZmP8-ihVjJtNSMbNc3if9Gmjd/view?usp=share_link
https://drive.google.com/file/d/1Je0m3rJZmP8-ihVjJtNSMbNc3if9Gmjd/view?usp=share_link

